Classification of Digital Rocks by Machine Learning to Discover Micro-to-Macro Relationships and Quantify Their Uncertainty

通过机器学习对数字岩石进行分类,以发现微观到宏观的关系并量化其不确定性

基本信息

  • 批准号:
    NE/H002804/1
  • 负责人:
  • 金额:
    $ 13.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Recent advances in high-resolution imaging of porous materials have led to a dramatic increase in the collection of digital subsurface rock samples and have stimulated the development of a capability to model the rock microstructures and to calculate macro-scale transport, mechanical and acoustic properties by numerical simulations. These lead to a modelling approach that offers the potential for greatly expanding our database of material properties, without relying on expensive, or in some cases, impossible, laboratory measurements. It is envisaged by many that this approach, when augmented with validation lab measurements and micro-scale physics of concern, can be extended to discover predictive relationships between micro-scale arrangements of voids/solids and macro-scale properties, along with quantification of their uncertainty. This approach offers a potential solution to many applications where the properties of key types of rocks must be estimated from few samples. Waste disposal, CO2 storage and hydrate exploration in the subsurface are good examples within the NERC remit. In those applications, fine-grained rocks are of key concern, since they are assumed to function as barriers preventing substances from escaping into the atmosphere/biosphere. Unfortunately, such materials are expensive to sample and extremely difficult and costly to measure in the laboratory. Hence, an ability to predict fine-grained rock properties reliably and robustly would enable better modelling of macro-scale physical behaviours, assessment of the uncertainty of the behaviours, and understanding of the impacts of such applications to environment and public health. A micro-to-macro predictive relationship is expected to be highly non-linear when the physics becomes complex. Our preliminary investigations [1] on 3D micro images shows that even a single-phase flow property, like permeability, shows a strong non-linear correlation with the geometric and topological features (fig.1). Moreover, a robust non-linear relationship has to be identified from a large collection of samples and validated against new samples. Machine Learning (ML) provides a framework to carry out an automated process in which the knowledge of non-linear relationships can be learnt progressively from the growing collection of samples in a self-supervised manner. Such a process suits this purpose but must be underpinned by a set of smart and efficient tools for data search and retrieval, data-analysis, and data-mining. A basis on which all these tools are based is the ability to classify digital rock samples according to the diverse features of their microstructures as well as measured and/or calculated properties. The objective of this project is to explore the feasibility of constructing a suite of feature-based, content-aware and self-supervised ML classification techniques for digital rocks, within the NERC topic of environmental informatics. This will produce a ML system capable of classifying digital rock samples and macro-scale properties according to pre-defined controlling features. Ultimately, knowledge and experience gained from this pilot project will enable PIs to make fuller proposals to develop a suite of ML-based technologies for identifying predictive relationships between micro- and macro-scale features and predicting macro-scale properties. There is a scope for extending the technologies to other types of natural porous media and impacting across industries and research communities to address engineering and scientific questions about the physical properties of porous materials.
在多孔材料的高分辨率成像方面的最新进展导致地下数字岩石样品的收集急剧增加,并刺激了对岩石微观结构进行建模以及通过数值模拟计算宏观尺度传输、机械和声学特性的能力的发展。这导致了一种建模方法,它提供了极大地扩展我们的材料属性数据库的潜力,而不需要依赖昂贵的,或者在某些情况下,不可能的实验室测量。许多人设想,当这一方法与验证实验室测量和所关注的微观尺度物理相结合时,可以扩展到发现孔洞/固体的微观尺度安排与宏观尺度属性之间的预测关系,以及对它们的不确定性进行量化。这种方法为许多应用提供了一种潜在的解决方案,在这些应用中,关键类型的岩石的性质必须从少量样本中估计出来。废物处理、二氧化碳储存和地下水合物勘探都是NERC职权范围内的很好的例子。在这些应用中,细粒岩石是关键问题,因为它们被认为是阻止物质逃逸到大气层/生物圈的屏障。不幸的是,这样的材料样品昂贵,在实验室测量极其困难和昂贵。因此,能够可靠和可靠地预测细粒岩石的性质,将能够更好地模拟宏观尺度的物理行为,评估行为的不确定性,并了解此类应用对环境和公众健康的影响。当物理学变得复杂时,微观到宏观的预测关系预计将是高度非线性的。我们对三维微观图像的初步研究[1]表明,即使是像渗透率这样的单相流动特性,也与几何和拓扑特征表现出很强的非线性相关性(图1)。此外,必须从大量样本中确定稳健的非线性关系,并针对新样本进行验证。机器学习(ML)提供了一个执行自动化过程的框架,在这个过程中,非线性关系的知识可以以自我监督的方式从不断增长的样本集合中逐步学习。这样的过程符合这一目的,但必须以一套智能和高效的工具为基础,用于数据搜索和检索、数据分析和数据挖掘。所有这些工具的基础是,能够根据岩石样品的微观结构以及测量和/或计算的特性的不同特征对其进行分类。该项目的目标是探索在NERC环境信息学主题范围内,构建一套基于特征、内容感知和自我监督的数字岩石ML分类技术的可行性。这将产生一个ML系统,能够根据预定义的控制特征对数字岩石样本和宏观尺度属性进行分类。最终,从这个试点项目中获得的知识和经验将使PI能够提出更全面的建议,以开发一套基于ML的技术,用于识别微观和宏观尺度特征之间的预测关系,并预测宏观尺度属性。将这些技术扩展到其他类型的天然多孔介质,并影响整个行业和研究社区,以解决有关多孔材料物理性质的工程和科学问题,是有余地的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of Digital Rocks by Machine Learning
通过机器学习对数字岩石进行分类
Assessing Impact of Shale Gas Adsorption on Free-Gas Permeability via a Pore Network Flow Model
  • DOI:
    10.2118/178552-ms
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingsheng Ma;G. Couples
  • 通讯作者:
    Jingsheng Ma;G. Couples
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingsheng Ma其他文献

Construction of guiding grids for flow modelling in fault damage zones with through-going regions of connected matrix
连通矩阵贯通区域断层损伤带流动模拟引导网格的构建
  • DOI:
    10.1016/j.cageo.2006.06.004
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingsheng Ma;G. Couples
  • 通讯作者:
    G. Couples
Method of determining the cohesion and adhesion parameters in the Shan-Chen multicomponent multiphase lattice Boltzmann models
确定 Shan-Chen 多组分多相晶格玻尔兹曼模型中内聚力和粘附力参数的方法
  • DOI:
    10.1016/j.compfluid.2021.104925
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Xinyi Zhao;Qian Sang;Jingsheng Ma;Hemanta Sarma;Mingzhe Dong
  • 通讯作者:
    Mingzhe Dong
Explicit form and path regularity of Martingale representations
Martingale 表示的显式形式和路径规律
  • DOI:
    10.1007/978-1-4612-0197-7_15
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Jingsheng Ma;P. Protter;Jianfeng Zhang
  • 通讯作者:
    Jianfeng Zhang
沁水盆地南部高阶煤储层气水产出过程分析征
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    刘世奇;桑树勋;Jingsheng Ma;杨延辉;王鑫;杨艳磊
  • 通讯作者:
    杨艳磊
Identification of proteome-wide and functional analysis of lysine crotonylation in multiple organs of the human fetus
  • DOI:
    10.1186/s12953-025-00240-9
  • 发表时间:
    2025-03-13
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Lingyu Huang;Huaizhou Chen;Qiang Yan;Zhipeng Zeng;Yinglan Wang;Hui Guo;Wei Shi;Junjun Guo;Jingsheng Ma;Liusheng Lai;Yong Dai;Shenping Xie;Donge Tang
  • 通讯作者:
    Donge Tang

Jingsheng Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingsheng Ma', 18)}}的其他基金

An integrated assessment of UK Shale resource distribution based on fundamental analyses of shale mechanical & fluid properties.
基于页岩力学基础分析的英国页岩资源分布综合评估
  • 批准号:
    NE/R018022/1
  • 财政年份:
    2018
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Research Grant
Pore-Scale Study of Gas Flows in Ultra-tight Porous Media
超致密多孔介质中气体流动的孔隙尺度研究
  • 批准号:
    EP/M02203X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Research Grant

相似国自然基金

超灵敏高分辨的Digital-CRISPR技术用于免扩增的多重核酸检测
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Digital Twin的数控机床智能运行维护方法研究
  • 批准号:
    51875323
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于数字PCR(digital-PCR)技术的耳聋无创产前检测研究
  • 批准号:
    LQ19H040016
  • 批准年份:
    2018
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Digital LAMP技术的循环肿瘤细胞检测和分型新方法研究
  • 批准号:
    81702102
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于表面工程的外泌体digital PCR定量分析体系的构建及转化医学研究
  • 批准号:
    81702959
  • 批准年份:
    2017
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

IoDT2 - Internet of Digital Twin Things
IoDT2 - 数字孪生物联网
  • 批准号:
    10098627
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Collaborative R&D
Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
  • 批准号:
    10107050
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    EU-Funded
Development of digital diagnostics services for Parkinson’s disease
开发帕金森病数字诊断服务
  • 批准号:
    10086932
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Collaborative R&D
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Research Grant
Digital chemistry and catalysis: redefining reactions in confined systems
数字化学和催化:重新定义受限系统中的反应
  • 批准号:
    FL220100059
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Australian Laureate Fellowships
Cultivating digital music making in regional Australia
培育澳大利亚乡村地区的数字音乐制作
  • 批准号:
    DP240100680
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Discovery Projects
Digital Death and Immortality
数字死亡与永生
  • 批准号:
    DP240100432
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Discovery Projects
Audiobooks and digital book culture
有声读物和数字图书文化
  • 批准号:
    DE240100466
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Discovery Early Career Researcher Award
Art Box digital
艺术盒数码
  • 批准号:
    ES/Y010914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Research Grant
Scaling a Digital Treasure Hunt Game
扩展数字寻宝游戏
  • 批准号:
    ES/Y01104X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 13.52万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了