The evolution of deformation mechanisms, physical conditions and physical properties in the seismogenic Alpine Fault zone: a pilot study

高山地震断裂带变形机制、物理条件和物理性质的演化:初步研究

基本信息

  • 批准号:
    NE/H012486/1
  • 负责人:
  • 金额:
    $ 10.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

The movement of large faults in the Earth's crust is controlled by the physical properties of the fault rocks: these are materials formed within the zone of fault movement. Earthquakes are generated in the top 10-20 km of the earth's crust (known as the seismogenic zone). The fault rocks in the seismogenic zone (brittle fault rocks) are formed by processes that produce material made up of lots of small particles that roll-around and slide past each other, with fluids playing an important role in controlling these processes. Understanding the physics of brittle fault rocks is crucial to understanding both the long-term movement of faults, on a time scale of millions of years, and to understanding the nucleation, rupture and cessation of large earthquakes. The Alpine Fault zone of New Zealand is a major plate-boundary fault that produces great earthquakes every 200-400 years. The fault movement involves a large component of dextral strike-slip - when one stands on one side of the fault the other side moves to the right (at about 35mm per year averaged over hundreds of thousands of years). It also involves reverse movement, so that the east side is sliding upwards and over the west side, at about 10 mm per year. There is a very-high rainfall on the west coast of the South Island and the uplifted material is eroded quickly so that the action of the fault over tens of thousands to millions of years is to bring materials from depth up to the Earth's surface. Materials from 10km get to the surface in a million years. What is unique about the Alpine Fault zone is that fault rocks at the surface have come from all depths in the fault zone and that equivalent fault rocks are being generated by the active fault today. We can sample brittle fault rocks at the surface that were formed at 5km depth and we can use geophysics (remote sensing into the Earth) to find out about what conditions exist today in the active fault at 5km depth, where equivalent fault rocks are being created. There is nowhere else where we can do this. In this proposal we aim to collect the first complete section of brittle fault rocks from the Alpine Fault zone and to use these to better understand the physics of processes in the seismogenic zone. The brittle fault rocks are often covered by river gravels and no complete section is exposed at the surface. So to collect the samples we plan to drill through about 150m of rock and collect cores from the drill hole. The core samples will be analysed in the laboratory so that we know their physical properties and can model better their behaviour on earthquake timescales and longer timescales. This project will involve significant international research collaboration and provides a stepping stone towards a more ambitious programme of deeper drilling and allied science supported by International Continental Drilling Programme. The ultimate goal is use the Alpine Fault Zone as a natural laboratory to understand the physics of rock deformation in the seismogenic zone and the physics of earthquake rupture.
地壳中大断层的运动受断层岩的物理性质控制:断层岩是在断层运动带内形成的物质。地震发生在地壳顶部10-20公里处(称为孕震区)。孕震区的断层岩(脆性断层岩)是由产生由许多小颗粒组成的物质的过程形成的,这些小颗粒相互滚动和滑动,流体在控制这些过程中发挥着重要作用。了解脆性断层岩的物理性质对于了解断层在数百万年时间尺度上的长期运动以及了解大地震的成核、破裂和停止都至关重要。新西兰的阿尔卑斯断层带是一个主要的板块边界断层,每200-400年产生一次大地震。断层运动包含了大量的右旋走滑成分-当一个人站在断层的一边时,另一边会向右移动(在数十万年的平均时间里,每年移动约35毫米)。它还涉及反向运动,因此东侧向上滑动并越过西侧,每年约10毫米。南岛西海岸的降雨量非常高,隆起的物质被迅速侵蚀,因此断层在数万至数百万年的时间里将物质从深处带到地球表面。10公里外的物质在100万年内到达地表。阿尔卑斯断层带的独特之处在于,地表的断层岩来自断层带的所有深度,而今天的活动断层正在产生等效的断层岩。我们可以在5公里深的地表上采集脆性断层岩的样本,我们可以使用地球物理学(遥感地球)来了解5公里深的活动断层中今天存在的条件,在那里产生了等效的断层岩。我们没有别的地方可以这样做。在这个建议中,我们的目标是收集第一个完整的部分脆性断层岩从阿尔卑斯山断层带,并使用这些更好地了解物理过程中的孕震区。脆性断层岩常被河流砾石覆盖,地表无完整剖面出露。因此,为了收集样本,我们计划钻透大约150米的岩石,并从钻孔中收集岩心。岩芯样本将在实验室进行分析,以便我们了解它们的物理特性,并能够更好地模拟它们在地震时间尺度和更长时间尺度上的行为。该项目将涉及重要的国际研究合作,并为国际大陆钻探计划支持的更雄心勃勃的深层钻探和相关科学计划提供垫脚石。最终目标是利用阿尔卑斯断层带作为天然实验室,了解孕震区岩石变形物理和地震破裂物理。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geochemical and microstructural evidence for interseismic changes in fault zone permeability and strength, A lpine F ault, N ew Z ealand
新西兰阿尔卑斯断层断层带渗透性和强度震间变化的地球化学和微观结构证据
Fault Zone Guided Wave generation on the locked, late interseismic Alpine Fault, New Zealand
新西兰锁定的晚期间震高山断层上的断层带导波生成
  • DOI:
    10.1002/2015gl064208
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Eccles J
  • 通讯作者:
    Eccles J
Laboratory Permeability and Seismic velocity anisotropy measurements across the Alpine Fault, New Zealand.
新西兰阿尔卑斯断层的实验室渗透率和地震速度各向异性测量。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen M.J.
  • 通讯作者:
    Allen M.J.
Evidence for cyclical fault zone sealing and strengthening, Alpine Fault, New Zealand.
新西兰高山断层周期性断层带封闭和强化的证据。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen M.J.
  • 通讯作者:
    Allen M.J.
Observations and Implications of Cyclical Slip in DFDP-1 Principal Slip Zone Gouges, Alpine Fault, New Zealand.
新西兰高山断层 DFDP-1 主滑带凿岩中周期性滑移的观测和影响。
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boulton, C.
  • 通讯作者:
    Boulton, C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elisabetta Mariani其他文献

Towards an improved understanding of the mechanical properties and rheology of the lithosphere: an introductory article to ‘Rock Deformation from Field, Experiments and Theory: A Volume in Honour of Ernie Rutter’
提高对岩石圈机械性能和流变学的理解:《现场岩石变形、实验和理论:纪念厄尼·拉特的卷》的介绍性文章
  • DOI:
    10.1144/sp409.14
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elisabetta Mariani;Julian Mecklenburgh;Daniel R. Faulkner
  • 通讯作者:
    Daniel R. Faulkner
E. H. Rutter: a biography
E.H.鲁特:传记
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel R. Faulkner;Elisabetta Mariani;Julian Mecklenburgh;S. Covey
  • 通讯作者:
    S. Covey

Elisabetta Mariani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elisabetta Mariani', 18)}}的其他基金

Calibration of a new model for mantle viscosity: the role of grain boundaries from bicrystal experiments
地幔粘度新模型的校准:双晶实验中晶界的作用
  • 批准号:
    NE/S000585/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Research Grant
The Strength of the Lower Mantle
下地幔的强度
  • 批准号:
    NE/L007363/1
  • 财政年份:
    2014
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Research Grant
The Feedback Between Volatiles and Mantle Dynamics
挥发物与地幔动力学之间的反馈
  • 批准号:
    NE/M000060/1
  • 财政年份:
    2014
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Research Grant
Microstructure evolution and grain boundary mobility during creep deformation and annealing of anhydrite rocks.
硬石膏岩石蠕变变形和退火过程中的微观结构演化和晶界迁移率。
  • 批准号:
    NE/H001034/1
  • 财政年份:
    2010
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Research Grant
A new method to track the evolution of rock microstructures in shear deformation (torsion) experiments.
一种在剪切变形(扭转)实验中跟踪岩石微观结构演化的新方法。
  • 批准号:
    NE/G01034X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Research Grant
Solidification in mafic magma chambers
镁铁质岩浆室中的凝固
  • 批准号:
    NE/F018789/1
  • 财政年份:
    2008
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Research Grant

相似国自然基金

可积系统的可积形变及其应用
  • 批准号:
    10901090
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
  • 批准号:
    10872219
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
  • 批准号:
    2338346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Continuing Grant
4D Printed Origami Structures: Deformation Mechanisms and Mechanics
4D 打印折纸结构:变形机制和力学
  • 批准号:
    DP240103328
  • 财政年份:
    2024
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Discovery Projects
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Developing a data-driven, real-time electron microscopy method toward interpreting plastic deformation and fracture mechanisms of structural materials in sub-microscopic level.
开发一种数据驱动的实时电子显微镜方法,以解释亚微观水平结构材料的塑性变形和断裂机制。
  • 批准号:
    23H00238
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313861
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Deformation Mechanisms in Microstructurally Tailored High Strength Alloys Near the Ideal Limit
合作研究:接近理想极限的微观结构定制高强度合金的变形机制
  • 批准号:
    2310306
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Deformation Mechanisms in Microstructurally Tailored High Strength Alloys Near the Ideal Limit
合作研究:接近理想极限的微观结构定制高强度合金的变形机制
  • 批准号:
    2310307
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Standard Grant
Stability of nanoscale particles in Oxide-Dispersion-Strengthened (ODS) steels under extremely large and multi-directional deformation conditions
氧化物弥散强化(ODS)钢中纳米级颗粒在极大和多向变形条件下的稳定性
  • 批准号:
    23K13087
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Thermo mechanical effects on Ti deformation mechanisms in cold dwell
热机械效应对冷驻留钛变形机制的影响
  • 批准号:
    2879298
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Studentship
Molecular-scale Observation of Heterogeneous Crosslinked Structures and Local Deformation and Fracture Mechanisms of Epoxy Resin
环氧树脂异质交联结构及局部变形和断裂机制的分子尺度观察
  • 批准号:
    23H02017
  • 财政年份:
    2023
  • 资助金额:
    $ 10.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了