Aerosol-Cloud Coupling And Climate Interactions in the Arctic
北极的气溶胶-云耦合和气候相互作用
基本信息
- 批准号:NE/I028653/1
- 负责人:
- 金额:$ 70.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The climate of the Arctic is changing faster than that almost anywhere else on Earth, warming at a rate of twice the global average. This warming is accompanied by a rapid melting of the sea ice - 2007 saw a record minimum in summer ice extent, and the years since have seen the 2nd and 3rd lowest summer ice extents on record - and a thinning of the ice that remains from year to year. The strong warming in the Arctic is due to several positive feedback processes, including a sea-ice albedo feedback (warmer conditions melt ice, lowering the average reflectivity of the mixed ice/ocean surface and thus absorbing more solar radiation, leading to increased ice melt and further lowering of the albedo) and several cloud feedbacks. Over most of the globe low clouds act to cool the surface since they reflect sunlight; over the arctic the highly reflective ice surface reduces the significance of cloud reflectivity, and the absorption of infrared radiation by cloud water droplets becomes the dominant effect - this acts to trap heat below cloud, warming the surface.Although climate models generally show a strong greenhouse warming effect in the Arctic, they also disagree with each other more in the Arctic than anywhere else, producing a wider range of possible future climate conditions. The models also tend not to be able to reproduce current Arctic climate conditions very accurately. This large uncertainty in models of the Arctic climate results primarily from poor representation of physical processes within the models, and some unique and particularly challenging conditions. The largest single source of uncertainty is the representation of clouds. The models use simple representations of cloud properties that were developed from observations in mid latitude or tropical cloud systems - very different conditions from those that exist in the Arctic. This project will make airborne in situ measurements of cloud microphysical properties, the vertical structure of the boundary layer and aerosol properties, and the fluxes of solar and infra red radiation above, below, and within cloud. It will also measure the production rates and properties of aerosol at the surface and their variability with season and extent of sea ice cover. These measurements will be used, along with a range of numerical models of aerosol and cloud processes, and atmospheric dynamics to evaluate the interactions between sea ice extent, aerosol production and cloud properties. New and improved descriptions of these processes suitable for use within climate models will be developed, tested, and implemented within the MetOffice climate model HadGEM. The ability of the current MetOffice models to reproduce the observed Arctic cloud and boundary layer properties will be tested, and the impact of the new parameterization schemes evaluated.Finally we will undertake a series of climate simulations to examine how future climate will evolve, and the feedbacks between warming of the Arctic, melting of sea ice, production of aerosol, and the properties of clouds evaluated.
北极气候的变化速度几乎比地球上任何其他地方都要快,其变暖速度是全球平均速度的两倍。这种变暖伴随着海冰的快速融化——2007年夏季海冰面积达到了创纪录的最低水平,自那以后的几年出现了有记录以来第二和第三低的夏季海冰面积——并且海冰每年都在变薄。北极地区的强烈变暖是由于几个正反馈过程,包括海冰反照率反馈(变暖的条件融化冰,降低混合冰/海洋表面的平均反射率,从而吸收更多的太阳辐射,导致冰融化增加和反照率进一步降低)和几个云反馈。在全球大部分地区,低云反射阳光,起到冷却地表的作用;在北极上空,高反射率的冰表面降低了云反射率的重要性,云水滴对红外辐射的吸收成为主要作用——这将热量困在云下,使地表变暖。尽管气候模式普遍显示北极有强烈的温室效应,但它们在北极的差异也比其他任何地方都大,从而产生了更大范围的未来可能的气候条件。这些模型也往往不能非常准确地再现当前的北极气候条件。北极气候模式的这种巨大的不确定性主要是由于模式中对物理过程的代表性不足,以及一些独特的、特别具有挑战性的条件。不确定性的最大单一来源是云的表示。这些模型使用了从对中纬度或热带云系统的观测中发展出来的云特性的简单表示,这些云系统的条件与北极地区的条件截然不同。该项目将对云的微物理特性、边界层的垂直结构和气溶胶特性以及云上、云下和云内的太阳和红外辐射通量进行空中现场测量。它还将测量地表气溶胶的产生速率和性质,以及它们随季节和海冰覆盖范围的变化。这些测量结果将与一系列气溶胶和云过程的数值模型以及大气动力学一起用于评估海冰范围、气溶胶产生和云特性之间的相互作用。将在metooffice气候模型hagem中开发、测试和实施适合在气候模型中使用的这些过程的新的和改进的描述。将测试当前metooffice模式重现观测到的北极云和边界层特性的能力,并评估新的参数化方案的影响。最后,我们将进行一系列气候模拟,以研究未来气候将如何演变,以及北极变暖、海冰融化、气溶胶产生和评估云的性质之间的反馈。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observations and comparisons of cloud microphysical properties in spring and summertime Arctic stratocumulus clouds during the ACCACIA campaign
ACCACIA 活动期间春季和夏季北极层积云云微物理特性的观测和比较
- DOI:10.5194/acp-15-3719-2015
- 发表时间:2015
- 期刊:
- 影响因子:6.3
- 作者:Lloyd G
- 通讯作者:Lloyd G
Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation
- DOI:10.5194/acp-16-1545-2016
- 发表时间:2016-01-01
- 期刊:
- 影响因子:6.3
- 作者:Elvidge, A. D.;Renfrew, I. A.;King, J. C.
- 通讯作者:King, J. C.
Observations of surface momentum exchange over the marginal-ice-zone and recommendations for its parameterization
边缘冰区表面动量交换的观测及其参数化建议
- DOI:10.5194/acpd-15-26609-2015
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Elvidge A
- 通讯作者:Elvidge A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Lachlan-Cope其他文献
Thomas Lachlan-Cope的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Lachlan-Cope', 18)}}的其他基金
Arctic Summer-time Cyclones: Dynamics and Sea-ice Interaction
北极夏季气旋:动力学和海冰相互作用
- 批准号:
NE/T006811/1 - 财政年份:2020
- 资助金额:
$ 70.72万 - 项目类别:
Research Grant
EUREC4A-UK: Elucidating the role of cloud-circulation coupling in climate
EUREC4A-UK:阐明云-环流耦合在气候中的作用
- 批准号:
NE/S015779/1 - 财政年份:2019
- 资助金额:
$ 70.72万 - 项目类别:
Research Grant
相似海外基金
Collaborative Research: Cloud-Radiative Feedback as the Coupling Mechanism of the Madden-Julian Oscillation and Quasi-Biennial Oscillation
合作研究:云辐射反馈作为马登-朱利安振荡和准两年振荡的耦合机制
- 批准号:
2303505 - 财政年份:2023
- 资助金额:
$ 70.72万 - 项目类别:
Standard Grant
Collaborative Research: Cloud-Radiative Feedback as the Coupling Mechanism of the Madden-Julian Oscillation and Quasi-Biennial Oscillation
合作研究:云辐射反馈作为马登-朱利安振荡和准两年振荡的耦合机制
- 批准号:
2303504 - 财政年份:2023
- 资助金额:
$ 70.72万 - 项目类别:
Standard Grant
Collaborative Research: Cloud-Radiative Feedback as the Coupling Mechanism of the Madden-Julian Oscillation and Quasi-Biennial Oscillation
合作研究:云辐射反馈作为马登-朱利安振荡和准两年振荡的耦合机制
- 批准号:
2303506 - 财政年份:2023
- 资助金额:
$ 70.72万 - 项目类别:
Standard Grant
Impact of Surface-Cloud Coupling on Aerosol-Radiation- Cloud-Interactions for Boundary-layer Clouds over Land and Oceans
地面-云耦合对陆地和海洋边界层云气溶胶-辐射-云-相互作用的影响
- 批准号:
2126098 - 财政年份:2021
- 资助金额:
$ 70.72万 - 项目类别:
Standard Grant
EUREC4A-UK: Elucidating the role of cloud-circulation coupling in climate
EUREC4A-UK:阐明云-环流耦合在气候中的作用
- 批准号:
NE/S015752/1 - 财政年份:2020
- 资助金额:
$ 70.72万 - 项目类别:
Research Grant
EUREC4A-UK: Elucidating the role of cloud-circulation coupling in climate
EUREC4A-UK:阐明云-环流耦合在气候中的作用
- 批准号:
NE/S015779/1 - 财政年份:2019
- 资助金额:
$ 70.72万 - 项目类别:
Research Grant
EUREC4A mission proposal - Elucidating the Role of Cloud-Circulation Coupling in Climate
EUREC4A 任务提案 - 阐明云环流耦合在气候中的作用
- 批准号:
423239633 - 财政年份:2019
- 资助金额:
$ 70.72万 - 项目类别:
Infrastructure Priority Programmes
EUREC4A-UK: Elucidating the role of cloud-circulation coupling in climate
EUREC4A-UK:阐明云-环流耦合在气候中的作用
- 批准号:
NE/S015868/1 - 财政年份:2019
- 资助金额:
$ 70.72万 - 项目类别:
Research Grant
Understanding Two-way Coupling Between Cloud Radiative Effects and the Large-Scale Extratropical Atmospheric Circulation
了解云辐射效应与大规模温带大气环流之间的双向耦合
- 批准号:
1547003 - 财政年份:2016
- 资助金额:
$ 70.72万 - 项目类别:
Standard Grant
Aerosol-Cloud Coupling And Climate Interactions in the Arctic
北极的气溶胶-云耦合和气候相互作用
- 批准号:
NE/I028858/1 - 财政年份:2012
- 资助金额:
$ 70.72万 - 项目类别:
Research Grant