Where did all the CO2 go? Insights from boron isotopes in deep-sea corals
所有的二氧化碳都去哪儿了?
基本信息
- 批准号:NE/J021075/1
- 负责人:
- 金额:$ 40.07万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the last 2.5 million years or so the Earth's climate has regularly oscillated between warm periods, like today called interglacials, and frigid cold periods called glacials when several kms of ice blanketed the Northern Hemisphere. Bubbles of ancient air trapped in ice cores tell us that, although the cycles are ultimately triggered by changes in the Earth's orbit around the Sun, they are largely driven by increases in the atmospheric concentration of the greenhouse gas carbon dioxide (CO2) - CO2 is low during glacial periods and high during interglacial periods. During each cycle, cooling into a glacial tends to be rather slow (taking between 90 to 30 thousand years) and the warming that terminates each glacial period tends to be very rapid (~10 thousand years in length). Since these warming events caused the dramatic and rapid retreat of the northern hemisphere ice sheets they are known as deglacials. The last deglacial began around 18 thousand years ago and was completed by around 10 thousand years ago. Despite these glacial-interglacial cycles being the most dramatic and significant recent examples of global climate change, their exact cause is not known. What we do know however is that during a deglacial CO2 is most likely being moved out of the deep oceans where it is stored during glacial periods, to the atmosphere, where it warms the Earth up and drives the retreat of the ice sheets, until the next cooling cycle begins. In order to tie down which mechanisms are responsible for moving the CO2 around like this we need to know exactly where in the ocean it is going. Some studies point to it being stored in the deep abyss in water that circulates around Antarctica, therefore suggesting it is mechanisms operating in this region that are responsible. Although this agrees with many of our observations, some other clues point to the North Pacific on the other side of the globe, as being important. And it has even been recently suggested that the deep ocean isn't involved at all. In this proposal we shed light on this debate by determining whether or not CO2 was stored around Antarctica.No actual measurements exist of the CO2 of seawater 18 thousand years ago, therefore we have to use indirect measurements known as proxies. The proxy we will use is based on boron in ancient deep-sea coral skeletons. Deep-sea corals, like their cousins found in warm tropical seas, make skeletons out of calcium carbonate. The isotopic composition of boron in their calcium carbonate skeleton is related to the pH in which the coral grew and the pH of seawater is proportional to the amount of CO2 it contains. Therefore, pH is a very useful and direct tracer ofthe CO2 stored in the glacial abyss. However, in order to get the best pH reconstructions we first need to calibrate the proxy better than it is currently. We will mainly do this by growing deep-sea corals at known pH in the laboratory and measuring their boron composition. Armed with this better understanding we will not only get an idea of how these animals will be affected by future ocean acidification, but, by making measurements of the boron isotopic composition of ancient deep-sea coral skeletons of different ages we can reconstruct how pH evolved in one location through the entire deglacial. We have a number of deep-sea coral samples from around 1500 m water depth in the SW Pacific that are from 30 to 8 thousand years old. We are interested in this region because it has been put forward as a key route for CO2 as it is mixed from the deep abyss into the upper levels of the ocean and then ultimately into the atmosphere. The pH record we will produce will be a thorough test of our current ideas of how CO2 moves between ocean and atmosphere during a deglacial; this study will therefore provide valuable insights into the mechanisms responsible for glacial-interglacial pCO2 change.
在过去的250万年左右的时间里,地球的气候在温暖时期(比如今天的间冰期)和寒冷时期(冰期)之间有规律地振荡,冰期是几公里的冰覆盖了北半球。被困在冰芯中的古代空气气泡告诉我们,尽管这些循环最终是由地球绕太阳轨道的变化引发的,但它们在很大程度上是由大气中温室气体二氧化碳(CO2)浓度的增加所驱动的——CO2在冰期低,在间冰期高。在每个周期中,冷却进入冰期往往相当缓慢(需要9万至3万年),而结束每个冰期的变暖往往非常迅速(大约1万年)。由于这些变暖事件导致北半球冰盖急剧而迅速的退缩,它们被称为冰川消融。最后一次去冰期大约开始于1.8万年前,完成于1万年前。尽管这些冰期-间冰期旋回是最近全球气候变化的最显著和最重要的例子,但其确切原因尚不清楚。然而,我们所知道的是,在冰期去冰期间,二氧化碳最有可能被从冰期储存的深海转移到大气中,在那里它使地球变暖并推动冰盖的退缩,直到下一个冷却周期开始。为了确定是哪种机制导致二氧化碳像这样移动,我们需要确切地知道它在海洋中的去向。一些研究指出,它被储存在南极洲周围循环的深水中,因此表明这是该地区运行的机制造成的。尽管这与我们的许多观察结果一致,但其他一些线索表明,地球另一边的北太平洋也很重要。最近甚至有人提出,深海根本没有参与其中。在这项提案中,我们通过确定二氧化碳是否储存在南极洲周围来阐明这场辩论。1.8万年前海水中的二氧化碳含量没有实际的测量数据,因此我们必须使用间接的测量方法。我们将使用的代理是基于古代深海珊瑚骨骼中的硼。深海珊瑚,就像它们在温暖的热带海洋中发现的近亲一样,用碳酸钙制造骨骼。碳酸钙骨架中硼的同位素组成与珊瑚生长的pH值有关,海水的pH值与海水中二氧化碳的含量成正比。因此,pH值是一种非常有用的直接示踪剂,可以显示冰川深渊中储存的二氧化碳。然而,为了获得最佳的pH重建,我们首先需要比目前更好地校准代理。我们将主要通过在实验室中在已知的pH值下种植深海珊瑚,并测量它们的硼成分来做到这一点。有了更好的了解,我们不仅可以了解这些动物将如何受到未来海洋酸化的影响,而且通过测量不同年龄的古代深海珊瑚骨骼的硼同位素组成,我们可以重建整个冰川消融过程中一个地方的pH值是如何演变的。我们有一些深海珊瑚样本,它们来自西南太平洋1500米深的地方,有3万到8千年的历史。我们对这个区域很感兴趣,因为它被认为是二氧化碳的主要途径,因为它从深海混合到海洋上层,然后最终进入大气。我们将制作的pH值记录将是对我们目前关于在冰川消融期间二氧化碳如何在海洋和大气之间移动的想法的彻底测试;因此,这项研究将为冰期-间冰期二氧化碳分压变化的机制提供有价值的见解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga
- DOI:10.1016/j.gca.2017.08.021
- 发表时间:2017-11-15
- 期刊:
- 影响因子:5
- 作者:Donald, Hannah K.;Ries, Justin B.;Foster, Gavin L.
- 通讯作者:Foster, Gavin L.
Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean
- DOI:10.1038/s41561-018-0108-6
- 发表时间:2018-04
- 期刊:
- 影响因子:18.3
- 作者:W. Gray;J. Rae;Robert C.J. Wills;A. Shevenell;B. Taylor;A. Burke;G. Foster;C. Lear
- 通讯作者:W. Gray;J. Rae;Robert C.J. Wills;A. Shevenell;B. Taylor;A. Burke;G. Foster;C. Lear
Coral Sr-U thermometry
- DOI:10.1002/2015pa002908
- 发表时间:2016-06-01
- 期刊:
- 影响因子:0
- 作者:DeCarlo, Thomas M.;Gaetani, Glenn A.;Stewart, Joseph A.
- 通讯作者:Stewart, Joseph A.
Structural limitations in deriving accurate U-series ages from calcitic cold-water corals contrast with robust coral radiocarbon and Mg/Ca systematics
从方解石冷水珊瑚推导准确 U 系列年龄的结构限制与强大的珊瑚放射性碳和 Mg/Ca 系统学对比
- DOI:10.1016/j.chemgeo.2013.07.002
- 发表时间:2013
- 期刊:
- 影响因子:3.9
- 作者:Gutjahr M
- 通讯作者:Gutjahr M
An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite
- DOI:10.1016/j.chemgeo.2016.10.029
- 发表时间:2016-12
- 期刊:
- 影响因子:3.9
- 作者:J. Stewart;E. Anagnostou;G. Foster
- 通讯作者:J. Stewart;E. Anagnostou;G. Foster
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gavin Foster其他文献
T Plio-Pleistocene pCO_2-a multiproxy approach using alkenone and boron based carbonate system proxies
T Plio-更新世 pCO_2-使用烯酮和硼基碳酸盐系统代理的多代理方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Gavin Foster;Osamu Seki;Daniela N. Schmidt;Kimitaka Kawamira;Richard D. Pancost - 通讯作者:
Richard D. Pancost
El Nino-like condisions, decreased ocean productivity and ice decay during the Pliocene warmth
上新世温暖期间的厄尔尼诺现象、海洋生产力下降和冰层腐烂
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Richard D. Pancost;Osamu Seki;Gavin Foster;Schouten Stefan;Ellen C. Hopmans;Jaap S Sinning Damste;Daniela N. Schmidt - 通讯作者:
Daniela N. Schmidt
Ignoring "The Tempest": Pepys, Dryden, and the Politics of Spectating in 1667
- DOI:
10.2307/3817862 - 发表时间:
2000 - 期刊:
- 影响因子:0.3
- 作者:
Gavin Foster - 通讯作者:
Gavin Foster
Gavin Foster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gavin Foster', 18)}}的其他基金
CoralChem - The Mechanics of Coral Calcification Revealed by a Novel Electrochemical Tool Kit
CoralChem - 新型电化学工具套件揭示了珊瑚钙化的机制
- 批准号:
BB/X003507/1 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
C-FORCE: Carbon-Cycle Feedbacks from Response to Carbon Emissions
C-FORCE:碳排放响应的碳循环反馈
- 批准号:
NE/W009552/1 - 财政年份:2022
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
The Time Of flight Isotopic and elemental Concentration (TOPIC) Facility for nano- to micrometer scale analysis of Earth and anthropogenic materials
用于地球和人类材料纳米至微米级分析的飞行时间同位素和元素浓度 (TOPIC) 设施
- 批准号:
NE/T008814/1 - 财政年份:2019
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
SWEET:Super-Warm Early Eocene Temperatures and climate: understanding the response of the Earth to high CO2 through integrated modelling and data
SWEET:始新世早期超温暖温度和气候:通过综合建模和数据了解地球对高二氧化碳的反应
- 批准号:
NE/P019048/1 - 财政年份:2017
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
What caused the Mid Pleistocene Transition? Insights from a new high resolution CO2 record
是什么导致了中更新世过渡?
- 批准号:
NE/P011381/1 - 财政年份:2017
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
Abrupt Ocean Acidification Events
海洋突然酸化事件
- 批准号:
NE/H017356/1 - 财政年份:2010
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
Testing ice sheet models and modelled estimates of Earth's climate sensitivity using Miocene palaeoclimate data
使用中新世古气候数据测试冰盖模型和地球气候敏感性的模型估计
- 批准号:
NE/I006176/1 - 财政年份:2010
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
相似国自然基金
集体林区采伐管制变迁、农户生计转型与森林资源质量
- 批准号:72003097
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
How did our masticatory system evolve? Investigating bone and teeth microstructure in extant and fossil apes through X-ray synchrotron microtomography
我们的咀嚼系统是如何进化的?
- 批准号:
2888465 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Studentship
Revealing everyday resistance during the war in Bosnia: how did ordinary people's actions disrupt conflict and promote peace?
揭示波斯尼亚战争期间的日常抵抗:普通民众的行为如何平息冲突、促进和平?
- 批准号:
2887258 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Studentship
Collaborative Research: How did Terrestrial Ecosystems Rebuild Following the Cretaceous/Paleogene Mass Extinction?
合作研究:白垩纪/古近纪大规模灭绝后陆地生态系统如何重建?
- 批准号:
2317667 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Collaborative Research: How did Terrestrial Ecosystems Rebuild Following the Cretaceous/Paleogene Mass Extinction?
合作研究:白垩纪/古近纪大规模灭绝后陆地生态系统如何重建?
- 批准号:
2317671 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant
Did business support measures during COVID-19 pandemic create Zombie firms?: Evidence from Post-pandemic corporate performance
COVID-19 大流行期间的企业支持措施是否创造了僵尸公司?:大流行后企业绩效的证据
- 批准号:
23K18808 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Did the 2022 strong polar vortex make serial extratropical cyclone clustering more likely? (StratClust)
2022年的强极地涡旋是否使系列温带气旋聚集的可能性更大?
- 批准号:
NE/X011933/1 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Research Grant
The 'real' crisis faced by the ancient Mayans: why did Mayan cities decline?
古代玛雅人面临的“真正”危机:玛雅城市为何衰落?
- 批准号:
23H00701 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How did the Systems of Space and Time Evolve in Discourse? New explorations of Spatio-temporal Systems in the History of English
话语中的空间和时间系统是如何演变的?
- 批准号:
23K00588 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: How did Terrestrial Ecosystems Rebuild Following the Cretaceous/Paleogene Mass Extinction?
合作研究:白垩纪/古近纪大规模灭绝后陆地生态系统如何重建?
- 批准号:
2317668 - 财政年份:2023
- 资助金额:
$ 40.07万 - 项目类别:
Standard Grant














{{item.name}}会员




