ADVANCED MCMC ALGORITHMS FOR BIOMEDICAL DATA ANALYSIS
用于生物医学数据分析的先进 MCMC 算法
基本信息
- 批准号:2829243
- 负责人:
- 金额:$ 9.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-05-01 至 2001-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (Adapted from the applicant's abstract): Large and rapidly
growing sequence and structural databases provide a vast new resource for the
biomedical sciences. The usefulness of computational approaches to extract
information from these databases to address some of the most difficult and
important problems in molecular and structural biology has become increasingly
apparent. However, these data often contain several characteristics that are
well known to render them resistant to analysis, including presentations of
missing data, the existence of likelihood or posterior surfaces with multiple
local extremes, or the need to control the dimensional size of models used to
describe these complex data. Progress has been made on some of these issues,
most notably the missing data problem, through the use of Bayesian recursive
algorithms, expectations maximization algorithms, and hidden Markov models
(HMM) and MCMC sampling algorithms. However, the other issues remain largely
unsolved. Recent advances in MCMC technology have opened up fresh approaches
to these difficult data analysis problems. Specifically, the recent emergence
of multi-scales MCMC algorithms which are effective in identifying optima in
rough landscapes, and the development of reversible jump MCMC algorithms for
inferences on the dimension of a problem, have initiated changes in this
arena. In the last few months, a class of multistage MCMC algorithms, called
simulated sintering, which permit Bayesian inference on rough landscapes
including those inherent in many reversible jumping algorithms, present an
opportunity for a breakthrough for these very difficult data analysis
challenges. The aims of this research are to explore the development,
adaptation, and application of these methods to some of the grand challenges
of molecular and structural biology.
描述(改编自申请人摘要):大型且快速
不断增长的序列和结构数据库为生物学提供了巨大的新资源。
生物医学科学 计算方法提取的有用性
这些数据库中的信息,以解决一些最困难的,
分子和结构生物学中的重要问题已经变得越来越多
很明显 然而,这些数据通常包含几个特征,
众所周知,使他们耐分析,包括介绍,
缺失数据,存在可能性或多个后表面
局部极值,或需要控制用于
描述这些复杂的数据。 其中一些问题已经取得进展,
最值得注意的是缺失数据问题,通过使用贝叶斯递归
算法、期望最大化算法和隐马尔可夫模型
(HMM)MCMC采样算法。 然而,其他问题在很大程度上仍然存在
未破案件 MCMC技术的最新进展开辟了新的方法
解决这些数据分析难题。 具体来说,最近出现的
的多尺度MCMC算法,有效地识别最优解,
粗糙的景观,和可逆跳MCMC算法的发展,
对问题的维度的推断,已经引发了这方面的变化。
竞技场。 在过去的几个月里,一类多阶段MCMC算法,称为
模拟烧结,允许对粗糙地形进行贝叶斯推断
包括许多可逆跳跃算法中固有的那些,提出了一种
这些非常困难的数据分析的突破机会
挑战 本研究的目的是探讨发展,
这些方法的适应和应用,
分子和结构生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles E Lawrence其他文献
Charles E Lawrence的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles E Lawrence', 18)}}的其他基金
ADVANCED MCMC ALGORITHMS FOR BIOMEDICAL DATA ANALYSIS
用于生物医学数据分析的先进 MCMC 算法
- 批准号:
6188486 - 财政年份:1999
- 资助金额:
$ 9.24万 - 项目类别:
DETECTING SUBTLE SEQUENCE SIGNALS IN GENOMIC JUNK
检测基因组垃圾中的细微序列信号
- 批准号:
2519133 - 财政年份:1995
- 资助金额:
$ 9.24万 - 项目类别:
DETECTING SUBTLE SEQUENCE SIGNALS IN GENOMIC 'JUNK'
检测基因组“垃圾”中的细微序列信号
- 批准号:
2209576 - 财政年份:1995
- 资助金额:
$ 9.24万 - 项目类别:
DETECTING SUBTLE SEQUENCE SIGNALS IN GENOMIC JUNK
检测基因组垃圾中的细微序列信号
- 批准号:
2209577 - 财政年份:1995
- 资助金额:
$ 9.24万 - 项目类别: