Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements.
稀土元素的生物地球化学、生物提取和生物回收。
基本信息
- 批准号:NE/L002213/1
- 负责人:
- 金额:$ 1.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rare earth elements (REEs) are a group of 17 metals (La-Lu, Y, Sc) that have been discovered to have a number of useful chemical and physical properties and have been harnessed by a range of industries. REEs have critical uses in production of electronic components used in every-day items (computers, smartphones etc), ceramics, alloys, magnets, LCD screens and even in contrast agents used in medical imaging, such as during MRI scans. Whilst REEs are found in ores all over the world, current methods for extraction and separation of REEs from ores only work efficiently with ores containing large amounts of REEs relative to the amount of rock present ("high-grade ores"), whereas the majority of REE ore deposits worldwide contain low amounts of REEs and high amounts of rock ("low-grade ores"). Without effective extraction methods for low-grade ores, the global REE supply chain is dependent upon the few countries that have high-grade ore deposits, such as China. This means that the UK and EU are importing enormous amounts of these metals from China each year, at great cost (REE prices increase daily) and with not just associated shipping costs but an environmental impact of that transit and a high "carbon footprint".BioORE is a multi-disciplinary project lead by the University of Plymouth alongside the Universities of Manchester and Birmingham and the British Geological Survey, with the ultimate goal of exploring methods for extraction of REEs from low-grade ores found in the UK and EU, in order to try and provide us with a secure supply of these vital metals.The University of Plymouth has developed a bioextraction procedure in which low-grade REE ores can be broken down by 'rock eating' bacteria in carefully controlled reactors, leaving behind a small amount of rock waste (that could be recycled) and a solution containing a mixture of REEs. This procedure is relatively inexpensive and does not use any harmful chemicals or product any pollutants -event the CO2 produced by the bacteria during the process is trapped for recycling and not released into the environment. A further biorecovery process has been co-developed by the Universities of Plymouth and Birmingham in which REEs can be recovered back out of the mixture produced in bioextraction in a selective manner - that is to say that the process separates out the metals from the solution. This is achieved using controlled reactors containing bacteria embedded in a type of plastic, over which the REE solution flows. The bacteria produce large amounts of phosphate during their metabolism, which reacts with REEs producing REE phosphate biominerals, which form crystals all over the cells in the plastic matrix. By using a range of different bacteria and different conditions, we can selectively biorecovery REEs from mixtures. The biominerals can either be used directly by industries that need them or can be further processed either chemically or biologically to meet industry's needs.BioORE will bring together a range of international industries and will work with them to develop, optimise and scale-up these two biotechnologies with the goal of developing an effective method for REE extraction from low-grade ores. Use of a biotechnology is not only a means to fast and selective REE separation; it is also a 'green' technology, producing none of the harmful pollutants associated with current REE separation methods. These technologies will enable clean, 'green' REE production from low-grade ores found worldwide, permitting local production in countries that use them and reducing the CO2-burden associated to global transport.
稀土元素(ree)是一组17种金属(La-Lu, Y, Sc),已被发现具有许多有用的化学和物理性质,并已被一系列工业所利用。稀土元素在生产日常用品(电脑、智能手机等)、陶瓷、合金、磁铁、LCD屏幕,甚至在医学成像(如MRI扫描)中使用的造影剂中都有重要用途。虽然世界各地的矿石中都有稀土元素,但目前从矿石中提取和分离稀土元素的方法只适用于含有大量稀土元素的矿石(“高品位矿石”),而世界上大多数稀土矿床含有少量稀土元素和大量岩石(“低品位矿石”)。由于没有有效的低品位矿石提取方法,全球稀土供应链依赖于少数拥有高品位矿床的国家,如中国。这意味着英国和欧盟每年从中国进口大量的稀土金属,成本很高(稀土价格每天都在上涨),不仅有相关的运输成本,而且运输对环境的影响和高“碳足迹”。BioORE是由普利茅斯大学、曼彻斯特大学、伯明翰大学和英国地质调查局牵头的一个多学科项目,其最终目标是探索从英国和欧盟发现的低品位矿石中提取稀土的方法,以便为我们提供这些重要金属的安全供应。普利茅斯大学开发了一种生物萃取程序,在精心控制的反应器中,低品位的稀土矿石可以被“食岩”细菌分解,留下少量的岩石废料(可以回收利用)和含有稀土混合物的溶液。这个过程相对便宜,不使用任何有害化学物质或产品,也不使用任何污染物——如果细菌在这个过程中产生的二氧化碳被捕获回收而不释放到环境中。普利茅斯大学(university of Plymouth)和伯明翰大学(Birmingham)联合开发了一种进一步的生物回收工艺,通过这种工艺,稀土元素可以以一种选择性的方式从生物萃取产生的混合物中回收出来——也就是说,该工艺将金属从溶液中分离出来。这是通过在一种塑料中嵌入细菌的可控反应器实现的,稀土溶液在其上流动。细菌在代谢过程中产生大量的磷酸盐,磷酸盐与稀土发生反应,产生稀土磷酸盐生物矿物质,这些生物矿物质在塑料基质中的细胞中形成晶体。通过使用一系列不同的细菌和不同的条件,我们可以选择性地从混合物中生物回收稀土。这些生物矿物既可以直接供需要它们的工业使用,也可以通过化学或生物方法进一步加工以满足工业需要。BioORE将汇集一系列国际行业,并将与他们合作开发、优化和扩大这两种生物技术,目标是开发一种从低品位矿石中提取稀土元素的有效方法。利用生物技术不仅是一种快速、选择性分离稀土元素的手段;它也是一种“绿色”技术,不会产生与当前稀土分离方法相关的有害污染物。这些技术将使从世界各地发现的低品位矿石中生产清洁的“绿色”稀土元素成为可能,允许使用这些矿石的国家在当地生产,并减少与全球运输相关的二氧化碳负担。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Novel biomineralization process For continuous, selective recovery of rare earth elements
用于连续、选择性回收稀土元素的新型生物矿化工艺
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Murray AJ
- 通讯作者:Murray AJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rich Boden其他文献
Permanent draft genome of Thermithiobacillus tepidarius DSM 3134T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia
- DOI:
10.1186/s40793-016-0188-0 - 发表时间:
2016-09-26 - 期刊:
- 影响因子:5.400
- 作者:
Rich Boden;Lee P. Hutt;Marcel Huntemann;Alicia Clum;Manoj Pillay;Krishnaveni Palaniappan;Neha Varghese;Natalia Mikhailova;Dimitrios Stamatis;Tatiparthi Reddy;Chew Yee Ngan;Chris Daum;Nicole Shapiro;Victor Markowitz;Natalia Ivanova;Tanja Woyke;Nikos Kyrpides - 通讯作者:
Nikos Kyrpides
Erratum to: Permanent draft genome of Thermithiobacillus tepidarius DSM 3134T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia
- DOI:
10.1186/s40793-016-0197-z - 发表时间:
2016-10-11 - 期刊:
- 影响因子:5.400
- 作者:
Rich Boden;Lee P. Hutt;Marcel Huntemann;Alicia Clum;Manoj Pillay;Krishnaveni Palaniappan;Neha Varghese;Natalia Mikhailova;Dimitrios Stamatis;Tatiparthi Reddy;Chew Yee Ngan;Chris Daum;Nicole Shapiro;Victor Markowitz;Natalia Ivanova;Tanja Woyke;Nikos Kyrpides - 通讯作者:
Nikos Kyrpides
Rich Boden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements.
稀土元素的生物地球化学、生物提取和生物回收。
- 批准号:
NE/L002256/1 - 财政年份:2013
- 资助金额:
$ 1.57万 - 项目类别:
Research Grant
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements
稀土元素的生物地球化学、生物提取和生物回收
- 批准号:
NE/L002264/1 - 财政年份:2013
- 资助金额:
$ 1.57万 - 项目类别:
Research Grant
Biogeochemistry, Bioextraction and Biorecovery of Rare Earth Elements - BioORE.
稀土元素的生物地球化学、生物提取和生物回收 - BioORE。
- 批准号:
NE/L002248/1 - 财政年份:2013
- 资助金额:
$ 1.57万 - 项目类别:
Research Grant