Fundamental Understanding of Oil Adhesion Under Reservoir Conditions (FOilCon).

对油藏条件下石油附着力的基本了解 (FOilCon)。

基本信息

  • 批准号:
    NE/P004024/1
  • 负责人:
  • 金额:
    $ 19.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Growing global demand for oil, diminishing availability of conventional sources and increased sustainability criteria mean enhanced oil recovery (EOR) operations are increasingly deployed to extend reservoir life. This is especially true for mature UKCS fields, and BP has invested £120 million to deploy low salinity water EOR (Claire Ridge Field) to realise an additional 42M barrels of oil over the field life. Despite its increasing use, the geochemical basis of low salinity EOR is still not well understood. Oil wettability is linked to its "ability" to adhere to rock surfaces, which mainly occurs by the interaction of polar oil components with different mineral/grain surfaces. Therefore, understanding how EOR works requires a direct knowledge of the mechanisms controlling these interactions. To date most studies on the topic have been of an indirect nature, where a solution is flown over a core sample and different outputs are measured. More recently, chemical force microscopy (CFM) has been deployed to directly measure the adhesion between organic functional groups (representative of oil molecules) and mineral surfaces, but these measurements have been exclusively done at room temperature and pressure, in other words, well outside the conditions encountered in real reservoirs. This proposal seeks to alleviate this situation by designing, building and deploying a next-generation hydrothermal atomic force microscope (HAFM). Atomic force microscopy (AFM) has proved to be a key technique in studying a wide variety of phenomena at the nanoscale. This is due to its extremely high vertical (below 1 Å) and lateral (5-10 nm) resolution and its ability to perform studies in solution. Therefore, the AFM can provide quantitative kinetic data at the scale of elementary reactions and also qualitative information on multitude of processes (dissolution, precipitation, etc). Chemical force microscopy is a derivative of conventional AFM, where the tip is functionalised with a specific functional group and then it's approached to a surface, allowing for the measurements of interaction forces, including adhesion. Currently, however, hydrothermal conditions are beyond the range of commercial systems and only a handful of custom systems can reach temperatures of 130 C. The main goal of this grant is to develop a next-generation hydrothermal AFM. The main characteristics of this system will be: 1) Ability to reach 180 C and 20 atm. 2) The addition of XY translation stage, opening the door to study sub-mm crystals. 3) State-of-the-art fluid delivery system and custom-made fluid cell to perform experiments at any pH range desired. Once built, the HAFM will be deployed to study mineral-oil interactions at the nanoscale by means of CFM. Investigations in oil-mineral surface interactions will be carried out with different functionalised tips, representing a variety of functional groups (as present in crude oil), and will be carried out under solutions of different salinities with the goal of understanding the low salinity effect on reducing oil-surface adhesion. The application of the proposed instrument can have wide ranging implications in the NERC's strategic research areas of Physics and Chemistry of Earth Materials, and Sediments and sedimentary processes. In addition, the new HAFM, will have a range of applications outside the NERC's remit as well as in industry.
全球对石油的需求不断增长,传统能源的可获得性不断减少,可持续性标准不断提高,这意味着越来越多地采用提高采油(EOR)行动来延长油层寿命。对于成熟的英国KCS油田尤其如此,英国石油公司已投资1.2亿GB部署低矿化度水EOR(Claire Ridge油田),以实现油田寿命内额外的4200万桶石油。尽管它的使用越来越多,但低矿化度提高采收率的地球化学基础仍然不是很清楚。油的润湿性与其附着在岩石表面的能力有关,这主要是通过极性油成分与不同矿物/颗粒表面的相互作用而发生的。因此,要了解提高采收率的工作原理,就需要直接了解控制这些相互作用的机制。到目前为止,关于这一主题的大多数研究都是间接性质的,即将一种解决方案飞越核心样本,并测量不同的产出。最近,化学力显微镜(CFM)已被用于直接测量有机官能团(代表石油分子)与矿物表面之间的粘附性,但这些测量仅在室温和压力下进行,换句话说,远远超出了实际油藏中遇到的条件。这项提议旨在通过设计、建造和部署下一代水热原子力显微镜(HAFM)来缓解这种情况。原子力显微镜(AFM)已被证明是在纳米尺度上研究各种现象的关键技术。这要归功于它极高的垂直(低于1?)和横向(5-10 nm)分辨率,以及在溶液中进行研究的能力。因此,原子力显微镜可以提供元素反应规模的定量动力学数据,也可以提供关于多种过程(溶解、沉淀等)的定性信息。化学力显微镜是传统原子力显微镜的衍生,在原子力显微镜中,尖端通过特定的官能团进行功能化,然后接近表面,允许测量相互作用力,包括粘附力。然而,目前水热条件超出了商业系统的范围,只有少数定制系统可以达到130摄氏度的温度。这笔赠款的主要目标是开发下一代水热原子力显微镜。该系统的主要特点是:1)能够达到180摄氏度和20atm。2)增加了XY平移台,打开了研究亚毫米晶体的大门。3)最先进的流体输送系统和定制的流体单元,可在所需的任何pH范围内进行实验。一旦建成,HAFM将被部署用于通过CFM在纳米尺度上研究矿物与石油的相互作用。对石油-矿物表面相互作用的研究将使用不同的官能化尖端,代表各种官能团(如原油中存在的),并将在不同盐度的溶液中进行,目的是了解低盐度对降低石油-表面粘附力的影响。建议的仪器的应用可以在国家环境研究中心的地球材料物理和化学以及沉积物和沉积过程的战略研究领域产生广泛的影响。此外,新的HAFM将在NERC的职权范围之外以及在工业中有一系列的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hugh Greenwell其他文献

Hugh Greenwell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hugh Greenwell', 18)}}的其他基金

A New Non-Contact Swelling Meter for Assessing Early Stage Shale Hydration: Market and Capability Assessment
用于评估早期页岩水化的新型非接触式膨胀计:市场和能力评估
  • 批准号:
    NE/P018866/1
  • 财政年份:
    2017
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Research Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Beyond static metabolic maps - Understanding the cellular organization and dynamics of lipid flux for enhanced seed oil production
超越静态代谢图 - 了解细胞组织和脂质流动动态,以提高种子油产量
  • 批准号:
    2242822
  • 财政年份:
    2023
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Standard Grant
Understanding the Properties and Interaction Mechanisms of SAGD Slop Oil towards the Development of An Effective Treatment Technology
了解 SAGD 废油的性质和相互作用机制,以开发有效的处理技术
  • 批准号:
    537488-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding impacts of microbial methane ebullition in oil sands pit lakes: methane release and transport of petroleum hydrocarbons
了解油砂坑湖中微生物甲烷沸腾的影响:甲烷释放和石油碳氢化合物的运输
  • 批准号:
    571299-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Alliance Grants
Systematic understanding of fractal open microfluidics and its application to a new mechanism of oil/water separation
分形开放微流控的系统理解及其在油水分离新机制中的应用
  • 批准号:
    21H01775
  • 财政年份:
    2021
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding the Properties and Interaction Mechanisms of SAGD Slop Oil towards the Development of An Effective Treatment Technology
了解 SAGD 废油的性质和相互作用机制,以开发有效的处理技术
  • 批准号:
    537488-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Collaborative Research and Development Grants
Fundamental understanding of secondary processing aids in bitumen extraction from mined oil sands
对从开采的油砂中提取沥青的二次加工助剂的基本了解
  • 批准号:
    514583-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Collaborative Research and Development Grants
Fundamental understanding of secondary processing aids in bitumen extraction from mined oil sands
对从开采的油砂中提取沥青的二次加工助剂的基本了解
  • 批准号:
    514583-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding the Properties and Interaction Mechanisms of SAGD Slop Oil towards the Development of An Effective Treatment Technology
了解 SAGD 废油的性质和相互作用机制,以开发有效的处理技术
  • 批准号:
    537488-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding and Mitigating Leakage Pathways in Oil and Gas Well Cements
了解和减轻油气井水泥的泄漏途径
  • 批准号:
    531509-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Collaborative Research and Development Grants
Understanding the Properties and Interaction Mechanisms of SAGD Slop Oil towards the Development of An Effective Treatment Technology
了解 SAGD 废油的性质和相互作用机制,以开发有效的处理技术
  • 批准号:
    537488-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 19.94万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了