The utilisation of ambulance data to quantify the impact of temperature and air pollution on human health in urban environments.
利用救护车数据来量化城市环境中温度和空气污染对人类健康的影响。
基本信息
- 批准号:NE/P010997/1
- 负责人:
- 金额:$ 7.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research will examine how two environmental factors, air pollution and temperature, affect human health in urban environments as measured by ambulance call outs. A substantial amount of research has been undertaken to understand the relationship between air pollution, temperature and health but this has focused on hospital data, general practice (GP) data and calls to telephone health services such as NHS 111.Ambulance data is an underutilised resource for studying the impact of environmental factors on human health, which this research aims to change. Ambulance data captures a different set of people (generally with more serious conditions than GP data and more acute than the hospital admissions data, which is often planned). Approximately half of the health events picked up in ambulance data do not get recorded in any other dataset as people get treated by the paramedic and do not go on to access any other services. Finally, one of the biggest advantages of ambulance data is that the geographical data collected is where something happened, unlike all other health datasets where the location recorded is the person's residential address. This can be important, for example, if increased temperatures in the centre of a city (as temperatures can be exacerbated by large amounts of concrete and asphalt in built up areas) cause increased rates of people fainting from heatstroke. Looking at hospital data might not pick up this issue. Although people may be affected in the city centre (for example as that is where they work and/or shop), they could live all over the city so the signal is diluted and spread over a large area. However, ambulance data would highlight this cluster of data as, regardless of where people happen to live, the ambulances will all be called out to the centre of the city if this is where people were experiencing the symptoms and this is the postcode that is recorded. Ambulance data could also prove effective in picking up issues during cold weather, for instance you would collect data on where people fall when it is icy or for air pollution incidents, if for example toxic fumes were being given off by a factory fire and people walking nearby were being exposed.Studies historically have looked at air pollution and temperature in isolation but this study will also be examining the relationship between the two. This is important as one factor can affect the other, with higher temperatures affecting the concentrations of pollutants like ozone. Furthermore, people who are more likely to be exposed to extreme temperatures are also more likely to be exposed to air pollution (such as people who spend a lot of time outdoors, for example builders).As the relationship between environmental factors and health can change across the different climates in the UK, the research will be carried out in three cities situated in a rough line from the south to the north - London, Birmingham and Glasgow. Examining patterns across a range of locations will increase the applicability of the research findings to other cities across the UK.The Metrological Office has also produced UK Climate Projections with projections for future temperatures in 2020, 2050 and 2080. These projections will be used to predict how ambulance call out figures might change in the future so we can better understand the future burden of disease due to climate change.These findings can then be used to inform the surveillance of the health of the population, advice given to susceptible people with chronic conditions (for example what temperatures or air population concentrations warnings should be provided by health organisations) and thresholds for warnings (for instance heat health alerts) given to the general public. These interventions can alter people's behaviour so their exposure is lowered and the burden of disease is decreased.
这项研究将考察两个环境因素,空气污染和温度,如何影响城市环境中的人类健康,这是通过救护车呼叫来衡量的。为了解空气污染、温度和健康之间的关系,已经进行了大量的研究,但研究的重点是医院数据、全科医生(GP)数据和电话保健服务(如NHS 111)的呼叫。救护车数据是研究环境因素对人类健康影响的未充分利用的资源,本研究旨在改变这一点。救护车数据捕获的是一组不同的人(通常情况下,他们的病情比全科医生数据更严重,比住院数据更急迫,后者通常是有计划的)。救护车数据中大约有一半的健康事件没有被记录在任何其他数据集中,因为人们得到了护理人员的治疗,并且没有继续获得任何其他服务。最后,救护车数据的最大优势之一是,收集的地理数据是事件发生的地点,而不像所有其他健康数据集,记录的位置是人的居住地址。这可能很重要,例如,如果城市中心温度升高(因为建筑区域的大量混凝土和沥青会加剧温度升高)导致中暑昏厥的人数增加。查看医院数据可能不会发现这个问题。虽然人们可能会在市中心受到影响(例如,他们工作和/或购物的地方),但他们可能住在城市的各个地方,因此信号被稀释并传播到更大的区域。然而,救护车数据将突出这组数据,因为无论人们碰巧住在哪里,如果人们在市中心出现症状,救护车都会被召集到市中心,这是记录的邮政编码。救护车数据也可以在寒冷的天气里有效地发现问题,例如,你可以收集人们在结冰时跌倒的地方的数据,或者收集空气污染事件的数据,例如,如果工厂火灾释放出有毒烟雾,附近行走的人被暴露在空气中。以往的研究都是孤立地研究空气污染和温度,但这项研究也将研究两者之间的关系。这一点很重要,因为一个因素会影响另一个因素,更高的温度会影响臭氧等污染物的浓度。此外,更有可能暴露在极端温度下的人也更有可能暴露在空气污染中(比如在户外呆很长时间的人,比如建筑工)。由于环境因素和健康之间的关系在英国不同的气候条件下会发生变化,这项研究将在伦敦、伯明翰和格拉斯哥这三个城市进行,这三个城市从南到北大致处于一条直线上。研究不同地区的模式将增加研究结果对英国其他城市的适用性。气象局还制作了英国气候预测,预测了2020年、2050年和2080年的未来温度。这些预测将被用来预测未来救护车呼叫数据的变化,这样我们就能更好地了解气候变化带来的未来疾病负担。然后,这些发现可用于为人口健康监测提供信息,向患有慢性疾病的易感人群提供建议(例如卫生组织应提供何种温度或空气人口浓度警告)以及向一般公众提供警告阈值(例如热健康警报)。这些干预措施可以改变人们的行为,从而降低他们的接触,减少疾病负担。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of Air Temperature on London Ambulance Call-Out Incidents and Response Times
- DOI:10.3390/cli5030061
- 发表时间:2017-09-01
- 期刊:
- 影响因子:3.7
- 作者:Mahmood, Marliyyah A.;Thornes, John E.;Vardoulakis, Sotiris
- 通讯作者:Vardoulakis, Sotiris
Differential health responses to climate change projections in three UK cities as measured by ambulance dispatch data
- DOI:10.1016/j.envadv.2021.100146
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Gina C. Prichard;Kamolrat Sangkharat;P. Fisher;J. Thornes;R. Phalkey;Francis D. Pope
- 通讯作者:Gina C. Prichard;Kamolrat Sangkharat;P. Fisher;J. Thornes;R. Phalkey;Francis D. Pope
Determination of the impact of rainfall on road accidents in Thailand.
- DOI:10.1016/j.heliyon.2021.e06061
- 发表时间:2021-03
- 期刊:
- 影响因子:4
- 作者:Sangkharat K;Thornes JE;Wachiradilok P;Pope FD
- 通讯作者:Pope FD
The impact of air pollutants on ambulance dispatches A systematic review and meta-analysis of acute effects
空气污染物对救护车调度的影响急性影响的系统回顾和荟萃分析
- DOI:10.1097/01.ee9.0000609844.39797.cb
- 发表时间:2019
- 期刊:
- 影响因子:3.6
- 作者:K S
- 通讯作者:K S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis Pope其他文献
Chemical complexity of the urban atmosphere and its consequences: general discussion.
城市大气的化学复杂性及其后果:一般性讨论。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.4
- 作者:
F. Geiger;Francis Pope;R. Mackenzie;W. Brune;P. Monks;W. Bloss;Gary Fuller;N. Moussiopoulos;M. Hort;A. Tomlin;A. Presto;D. van Pinxteren;A. Vlachou;D. Heard;C. Hewitt;U. Baltensperger;A. Lewis;X. Querol;Saewung Kim;J. Hamilton;R. Sommariva;G. Mcfiggans;R. Harrison;J. Jimenez;E. Cross;J. Wenger;S. Pandis;A. Kiendler‐Scharr;N. Donahue;L. Whalley;B. Mcdonald;S. Pieber;A. Prévôt;M. S. Alam;N. Krishna Kumar;A. Wahner;A. Skouloudis;M. Kalberer;T. Wallington;R. Dunmore - 通讯作者:
R. Dunmore
Panel session: Increasing the relevance of air quality improvement as part of the planned transformation of the transport system
小组会议:提高空气质量改善的相关性,作为交通系统转型计划的一部分
- DOI:
10.1016/j.tranpol.2023.12.024 - 发表时间:
2023 - 期刊:
- 影响因子:6.8
- 作者:
Huw Davies;James Levine;Francis Pope;Suzanne Bartington - 通讯作者:
Suzanne Bartington
Francis Pope的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis Pope', 18)}}的其他基金
Hazard Identification Platform to Assess the Health Impacts from Indoor and Outdoor Air Pollutant Exposures, through Mechanistic Toxicology
通过机械毒理学评估室内和室外空气污染物暴露对健康的影响的危害识别平台
- 批准号:
NE/W002035/1 - 财政年份:2021
- 资助金额:
$ 7.66万 - 项目类别:
Research Grant
East African Digital Solutions to Air Quality Network
东非空气质量网络数字解决方案
- 批准号:
EP/T030100/1 - 财政年份:2020
- 资助金额:
$ 7.66万 - 项目类别:
Research Grant
Quantification of Utility of Atmospheric Network Technologies (QUANT)
大气网络技术效用量化 (QUANT)
- 批准号:
NE/T001968/1 - 财政年份:2019
- 资助金额:
$ 7.66万 - 项目类别:
Research Grant
相似海外基金
Feasibility and Efficacy of Ambulance-Based mhealth for Pediatric Emergencies (FEAMER) Trial
基于救护车的儿科紧急医疗 (FEAMER) 试验的可行性和有效性
- 批准号:
10574477 - 财政年份:2022
- 资助金额:
$ 7.66万 - 项目类别:
Feasibility and Efficacy of Ambulance-Based mhealth for Pediatric Emergencies (FEAMER) Trial
基于救护车的儿科紧急医疗 (FEAMER) 试验的可行性和有效性
- 批准号:
10269089 - 财政年份:2022
- 资助金额:
$ 7.66万 - 项目类别:
Early Administration of Steroids in the Ambulance Setting: An Observational Design Trial
在救护车环境中早期使用类固醇:观察性设计试验
- 批准号:
10596088 - 财政年份:2020
- 资助金额:
$ 7.66万 - 项目类别:
Early Administration of Steroids in the Ambulance Setting: An Observational Design Trial
在救护车环境中早期使用类固醇:观察性设计试验
- 批准号:
10132389 - 财政年份:2020
- 资助金额:
$ 7.66万 - 项目类别:
Development of a technique to support exploring the efficiency of ambulance dispatch considering wider emergency systems using artificial intelligence technologies and ambulance dispatch data
考虑使用人工智能技术和救护车调度数据的更广泛的应急系统,开发一种技术来支持探索救护车调度的效率
- 批准号:
20K14903 - 财政年份:2020
- 资助金额:
$ 7.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Early Administration of Steroids in the Ambulance Setting: An Observational Design Trial
在救护车环境中早期使用类固醇:观察性设计试验
- 批准号:
10372042 - 财政年份:2020
- 资助金额:
$ 7.66万 - 项目类别:
Racial and Ethnic Health Disparities Due to Ambulance Diversion
救护车改道造成的种族和民族健康差异
- 批准号:
9205252 - 财政年份:2016
- 资助金额:
$ 7.66万 - 项目类别:
Racial and Ethnic Health Disparities Due to Ambulance Diversion
救护车改道造成的种族和民族健康差异
- 批准号:
9028091 - 财政年份:2016
- 资助金额:
$ 7.66万 - 项目类别:
Study on high inclined elliptical orbiter aiming to support high data taransmision from ambulance
支持救护车高数据传输的高倾角椭圆轨道飞行器研究
- 批准号:
11480096 - 财政年份:1999
- 资助金额:
$ 7.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




