A Bayesian Belief network to operationalize the concepts of Soil Quality and Health
用于实施土壤质量和健康概念的贝叶斯信念网络
基本信息
- 批准号:NE/P014313/1
- 负责人:
- 金额:$ 32.24万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
'Soil Quality' and 'Soil Health' are general terms for indicators that are associated with 'Soil Security'. None of these terms within quotation marks is easy to define, however. Neither are they easy to quantify rigorously in a way that avoids dispute. Nonetheless all three terms have traction with policy makers and with land managers and regulators. Indicators provide benchmarks for ranking different places or practices and deciding where to deploy effort to bring about change as effectively and economically as possible and they provide a means to assess afterwards whether or not and to what extent this change has actually been brought about.As a result, indicators of this kind are attractive to stakeholders. Indicators often rely on expert opinion for their derivation, but experts differ. Even apparently objective biophysical measurements are subject to error and worse, the soil itself varies from place to place and even time to time. It is not clear how to eliminate bias or how to weight the different kinds of information - opinion and measurement.There is therefore scope for developing a rigorous, scientific approach to SQH that incorporates expert-derived opinion alongside physically-based measurements in our understanding of Soil Quality and Health (SQH) in a scientific manner.Bayesian Belief Networks are graph-based, directional networks that can incorporate probability distributions of these various kinds of data. Essentially the directedness leads from multiple pieces of data to a conclusion - in our case a rating of SQH. The network is self-learning in that any additional soils and data for which quality assessments are available will re-inforce the pathways that decide the quality rating. In use, SQH ratings for additional soils that contain even partial data can still be obtained if the net defaults to mean values where data is missing.To accommodate the various functions and scales needed to operationalise SQH, will require a set of Bayesian Belief Networks that considers the interactions of soil properties with SQH but also the impact of environmental change and land use and management on soil quality. There a numerous advantages to using BBNs: they can consider and integrate biological, economic and sociological factors and have effectively been use to determine the consequence of land-management decisions in land use decision behaviour. Bayesian modelling methods are a rigorous framework in which a complete characterization of the coupling and variability of soil quality is based on physical laws, empirical relationships but can easily incorporate expert knowledge formally and other kinds of soft data.
“土壤质量”和“土壤健康”是与“土壤安全”相关的指标的通用术语。然而,引号中的这些术语都不容易定义。它们也不容易以避免争议的方式严格量化。尽管如此,这三个任期都对政策制定者、土地管理者和监管者有吸引力。指标提供了基准,用于对不同的地方或做法进行排名,并决定在哪些方面作出努力,以尽可能有效和经济地实现变革,而且指标还提供了一种手段,用于事后评估这种变革是否实际实现以及在多大程度上实现了变革,因此,这类指标对利益攸关方具有吸引力。指标往往依赖于专家的意见,但专家意见不一。即使是明显客观的生物物理测量也会出现误差,更糟糕的是,土壤本身因地而异,甚至因时而异。目前尚不清楚如何消除偏见或如何衡量不同类型的信息-意见和测量。因此,有空间开发一个严格的,科学的方法SQH,结合专家得出的意见与物理为基础的测量,在我们的理解土壤质量和健康(SQH)以科学的方式。贝叶斯信念网络是基于图形的,定向网络可以合并这些各种数据的概率分布。从本质上讲,直接性从多个数据中得出结论-在我们的情况下,SQH评级。该网络是自我学习的,因为任何额外的土壤和质量评估数据将重新加强决定质量评级的途径。在使用中,如果网络默认为数据缺失的平均值,则仍然可以获得包含部分数据的其他土壤的SQH评级。为了适应操作SQH所需的各种功能和尺度,将需要一组贝叶斯置信网络,该网络考虑土壤特性与SQH的相互作用,以及环境变化和土地利用和管理对土壤质量的影响。BBN具有许多优点:它们可以考虑和整合生物,经济和社会因素,并已被有效地用于确定土地利用决策行为中的土地管理决策的后果。贝叶斯建模方法是一个严格的框架,其中土壤质量的耦合和变异性的完整表征是基于物理定律,经验关系,但可以很容易地将专家知识正式和其他种类的软数据。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Facilitating the elicitation of beliefs for use in Bayesian Belief modelling
- DOI:10.1016/j.envsoft.2019.104539
- 发表时间:2019-12-01
- 期刊:
- 影响因子:4.9
- 作者:Hassall, Kirsty L.;Dailey, Gordon;Whitmore, Andrew P.
- 通讯作者:Whitmore, Andrew P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Whitmore其他文献
Extracting knowledge from U.S. department of defense freedom of information act requests with social media
- DOI:
10.1016/j.giq.2011.08.015 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:
- 作者:
Andrew Whitmore - 通讯作者:
Andrew Whitmore
Andrew Whitmore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Whitmore', 18)}}的其他基金
LTLS Freshwater Ecosystems ("LTLS-FE"): Analysis and future scenarios of Long-Term and Large-Scale freshwater quality and impacts
LTLS 淡水生态系统(“LTLS-FE”):长期和大规模淡水质量和影响的分析和未来情景
- 批准号:
NE/X015718/1 - 财政年份:2022
- 资助金额:
$ 32.24万 - 项目类别:
Research Grant
Integrative modelling of grazing and geoelectrical signatures for soil compaction detection
用于土壤压实检测的放牧和地电特征综合建模
- 批准号:
BB/X011747/1 - 财政年份:2022
- 资助金额:
$ 32.24万 - 项目类别:
Research Grant
CROP-NET: Monitoring and predicting the effects of climate change on crop yields
CROP-NET:监测和预测气候变化对作物产量的影响
- 批准号:
NE/S016821/1 - 财政年份:2019
- 资助金额:
$ 32.24万 - 项目类别:
Research Grant
with FACCE-JPI Knowledge Hub: MACSUR-Partner 65
与 FACCE-JPI 知识中心:MACSUR-合作伙伴 65
- 批准号:
BB/N004884/1 - 财政年份:2015
- 资助金额:
$ 32.24万 - 项目类别:
Research Grant
Biosolids, Yield, Organic amendments in SOil. research to mitigate LeachIng and Denitrification: BYOSOLID
生物固体、产量、土壤中的有机改良剂。
- 批准号:
NE/M016714/1 - 财政年份:2014
- 资助金额:
$ 32.24万 - 项目类别:
Research Grant
Fundamental bases of biological soil resilience
生物土壤恢复力的基础
- 批准号:
BB/J000671/1 - 财政年份:2013
- 资助金额:
$ 32.24万 - 项目类别:
Research Grant
LTLS: Analysis and simulation of the Long-Term / Large-Scale interactions of C, N and P in UK land, freshwater and atmosphere
LTLS:英国土地、淡水和大气中 C、N 和 P 的长期/大规模相互作用的分析和模拟
- 批准号:
NE/J011568/1 - 财政年份:2013
- 资助金额:
$ 32.24万 - 项目类别:
Research Grant
FACCE-JPI Knowledge Hub MACSUR Partner 65
FACCE-JPI 知识中心 MACSUR 合作伙伴 65
- 批准号:
BB/K008854/1 - 财政年份:2012
- 资助金额:
$ 32.24万 - 项目类别:
Research Grant
相似海外基金
Network Effects Underlying Belief Polarization: An Agent-Based Modelling Approach
信念极化背后的网络效应:基于主体的建模方法
- 批准号:
2260347 - 财政年份:2019
- 资助金额:
$ 32.24万 - 项目类别:
Studentship
Improving landslide multi-hazard early warnings in Eastern Himalayas using a Bayesian belief network
使用贝叶斯信念网络改善喜马拉雅东部山体滑坡多灾害早期预警
- 批准号:
2125483 - 财政年份:2018
- 资助金额:
$ 32.24万 - 项目类别:
Studentship
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
- 批准号:
RGPIN-2014-06651 - 财政年份:2018
- 资助金额:
$ 32.24万 - 项目类别:
Discovery Grants Program - Individual
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
- 批准号:
RGPIN-2014-06651 - 财政年份:2017
- 资助金额:
$ 32.24万 - 项目类别:
Discovery Grants Program - Individual
Studies on Belief and Opinion Propagation in Multi-Agent Systems
多智能体系统中的信念和意见传播研究
- 批准号:
17K12746 - 财政年份:2017
- 资助金额:
$ 32.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
- 批准号:
RGPIN-2014-06651 - 财政年份:2016
- 资助金额:
$ 32.24万 - 项目类别:
Discovery Grants Program - Individual
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
- 批准号:
RGPIN-2014-06651 - 财政年份:2015
- 资助金额:
$ 32.24万 - 项目类别:
Discovery Grants Program - Individual
A fault detection and diagnosis tool for chemical processes based on hybrid-dynamic Bayesian belief network
基于混合动态贝叶斯信念网络的化工过程故障检测与诊断工具
- 批准号:
RGPIN-2014-06651 - 财政年份:2014
- 资助金额:
$ 32.24万 - 项目类别:
Discovery Grants Program - Individual
Towards a developmental understanding of theory of mind: Evidence from implicit false belief approach and avoidance tasks and neural network models
对心理理论的发展性理解:来自隐性错误信念方法和回避任务以及神经网络模型的证据
- 批准号:
362465-2008 - 财政年份:2010
- 资助金额:
$ 32.24万 - 项目类别:
Postgraduate Scholarships - Doctoral
Probability distribution of the condition of a trunk sewer network using a bayesian belief net
使用贝叶斯置信网的干线下水道网络状况的概率分布
- 批准号:
393865-2010 - 财政年份:2010
- 资助金额:
$ 32.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's