USING 3D-PRINTED ANALOGUES TO UNDERSTAND THE AERODYNAMICS OF COMPLEX ICE PARTICLES

使用 3D 打印类似物了解复杂冰颗粒的空气动力学

基本信息

  • 批准号:
    NE/R00014X/1
  • 负责人:
  • 金额:
    $ 48.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Many of the clouds in the atmosphere contain ice particles. These ice particles play an important role in the climate system, because high-altitude cirrus clouds cover around 30% of the globe at any one time, and act to warm the planet. Ice particles are also important for the development of precipitation, and not only in cold polar climates: even in mid-latitudes (like the UK), over three quarters of the precipitation that falls originates as snowflakes aloft - it is just that most of it melts before arriving at the surface.Ice particles, both in clouds and in snowfall at the surface, precipitate. In other words, they are able to grow large enough to fall through the air. This has several implications. The most obvious of these is that the rate at which the particles fall out controls the transport of water vertically through the atmosphere and to the surface. More subtly, the movement of each ice particle through the air directly influences the rate at which the particle grows, evaporates and melts. For example, if the air is humid enough, water molecules will diffuse to the ice crystal's surface and deposit there, leading to growth. If the particle is stationary, this growth occurs steadily but slowly, because the growing ice crystal depletes the vapour around it, leading to a shallow gradient in the concentration of molecules. If the particle is falling, this growth can occur much faster, because the ice crystal is constantly falling into fresh, humid air, leading to steep concentration gradients. The quantitative details of exactly how fast an ice particle of a given size and shape falls, and how much the growth rates are enhanced by, is determined by the airflow around the ice particle, or its aerodynamics. Unfortunately, this is an area of cloud physics where our understanding is extremely limited. The aerodynamics of simple shapes like spheres, spheroids and discs is well studied. However it is clear from observation of natural ice particles that they are not simple in their geometry. Instead the particles are often complex and irregular in their shape. We have almost no high-quality data on the aerodynamics of such particles. As a result, even state-of-the-art microphysical models are forced to approximate the aerodynamical effects on ice processes as though these complex irregular particles were spheres or spheroids, hoping that this is an adequate approximation. To solve this problem, experimental data is needed for the aerodynamics of particles with the complex shapes that we observe in the atmosphere. The stumbling block is that making suitable observations of natural ice particles in free-fall is extremely challenging. In snowfall at the surface the particles are small, fragile, easily blown by the wind, and likely to melt or evaporate if not handled with great care. Direct sampling of falling particles in cirrus clouds is impossible. In neither case is it possible to directly determine the airflow around the particle or the influence of that flow on the microphysical process rates.In this project we overcome these problems with the use of analogues. Using 3D printing techniques we will create plastic particles with the same complex geometry as natural ice particles. By dropping the particles in tanks of liquids, and through air in the laboratory and a vertical wind tunnel, we can determine how the fall speed of the particles is controlled by their size and geometry. Exploiting recent developments in tomographic particle imaging velocimetry we can measure the airflow around the falling analogues. From this we can directly determine how the airflow enhances the particle growth, evaporation and melting rates.
大气层中的许多云都含有冰粒。这些冰粒在气候系统中扮演着重要的角色,因为高海拔卷云在任何时候都覆盖了地球仪的30%,并使地球变暖。冰粒对降水的形成也很重要,不仅是在寒冷的极地气候中:即使在中纬度地区(如英国),超过四分之三的福尔斯降水都是由高空的雪花产生的--只是大部分在到达地面之前就融化了。云中和地面降雪中的冰粒都沉淀下来。换句话说,它们能够长得足够大,可以从空中落下。这有几个含义。其中最明显的是,颗粒脱落的速度控制着水垂直通过大气层到达地表的传输。更微妙的是,每个冰粒在空气中的运动直接影响着冰粒生长、蒸发和融化的速度。例如,如果空气足够潮湿,水分子会扩散到冰晶的表面并在那里存款,导致生长。如果粒子是静止的,这种增长会稳定但缓慢地发生,因为不断增长的冰晶耗尽了它周围的蒸汽,导致分子浓度的浅梯度。如果粒子下落,这种增长会发生得更快,因为冰晶不断落入新鲜潮湿的空气中,导致陡峭的浓度梯度。给定大小和形状的冰粒福尔斯的速度以及增长率的增加程度的定量细节取决于冰粒周围的气流或其空气动力学。不幸的是,这是云物理学的一个领域,我们的理解极其有限。简单形状如球体、椭球体和圆盘的空气动力学研究得很好。然而,从对天然冰粒的观察中可以清楚地看出,它们的几何形状并不简单。相反,颗粒通常是复杂和不规则的形状。我们几乎没有关于这种颗粒的空气动力学的高质量数据。因此,即使是最先进的微物理模型也被迫近似于空气动力学对冰过程的影响,就好像这些复杂的不规则颗粒是球体或椭球体一样,希望这是一个足够的近似。为了解决这个问题,需要我们在大气中观察到的具有复杂形状的颗粒的空气动力学的实验数据。障碍在于,对自由落体中的天然冰粒进行适当的观测是极其具有挑战性的。在地面的降雪中,颗粒很小,很脆弱,很容易被风吹走,如果不小心处理,很可能融化或蒸发。对卷云中下落的粒子进行直接取样是不可能的。在这两种情况下都不可能直接确定颗粒周围的气流或该气流对微物理过程速率的影响。在本项目中,我们通过使用类似物克服了这些问题。使用3D打印技术,我们将创建具有与天然冰粒相同的复杂几何形状的塑料颗粒。通过将颗粒放入液体罐中,并通过实验室中的空气和垂直风洞,我们可以确定颗粒的下落速度如何受其大小和几何形状的控制。利用层析粒子成像测速技术的最新发展,我们可以测量下降的类似物周围的气流。由此,我们可以直接确定气流如何增强颗粒生长、蒸发和熔化速率。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical analysis of the wake of complex-shaped snow particles at moderate Reynolds number
  • DOI:
    10.1063/5.0064902
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    G. Tagliavini;Mark W. McCorquodale;C. Westbrook;M. Holzner
  • 通讯作者:
    G. Tagliavini;Mark W. McCorquodale;C. Westbrook;M. Holzner
TRAIL part 2: A comprehensive assessment of ice particle fall speed parametrisations
TRAIL 第 2 部分:冰粒下落速度参数化的综合评估
Drag coefficient prediction of complex-shaped snow particles falling in air beyond the Stokes regime
斯托克斯范围外空气中复杂形状雪粒的阻力系数预测
TRAIL: A novel approach for studying the aerodynamics of ice particles
TRAIL:研究冰粒空气动力学的新方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chris Westbrook其他文献

Read the labels
阅读标签
  • DOI:
    10.1038/nphys1348
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Chris Westbrook
  • 通讯作者:
    Chris Westbrook

Chris Westbrook的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chris Westbrook', 18)}}的其他基金

New measurements of snowflake scattering and microstructure using a novel Multi-Wavelength, Multi-Angle Scatterometer (MuWMAS)
使用新型多波长、多角度散射仪 (MuWMAS) 对雪花散射和微观结构进行新测量
  • 批准号:
    NE/W000946/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Research Grant
A new signal processing technology to eliminate range sidelobes in meteorological radar data
一种新的信号处理技术,可消除气象雷达数据中的距离旁瓣
  • 批准号:
    NE/L011603/1
  • 财政年份:
    2014
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Research Grant
Exploiting multi-wavelength radar Doppler spectra to characterise the microphysics of ice hydrometeors
利用多波长雷达多普勒频谱来表征冰水凝物的微物理特征
  • 批准号:
    NE/K012444/1
  • 财政年份:
    2013
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Research Grant

相似国自然基金

锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
  • 批准号:
    JCZRLH202500778
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
  • 批准号:
    2025JJ60269
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
  • 批准号:
    2025JJ80409
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
  • 批准号:
    2025JJ70487
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Studentship
RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
  • 批准号:
    2327469
  • 财政年份:
    2024
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
  • 批准号:
    2344389
  • 财政年份:
    2024
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Standard Grant
Enhancing Mobility for elderly stroke survivors using 3D printed custom made ankle foot orthotics.
使用 3D 打印定制踝足矫形器增强老年中风幸存者的活动能力。
  • 批准号:
    ES/X006573/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Research Grant
Developing 3D-Printed Bioadhesive Hydrogel Patch Using Protein Nanoparticles for Drug Delivery Applications
使用蛋白质纳米颗粒开发用于药物输送应用的 3D 打印生物粘附水凝胶贴片
  • 批准号:
    570175-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Micro-Casting of Titanium Alloys Using 3D-Printed Self-Boiling Molds
使用 3D 打印自沸模具进行钛合金微铸造
  • 批准号:
    2132252
  • 财政年份:
    2022
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Standard Grant
Validation of Diffusion Time Dependent Models of Diffusion MRI using 3D Printed Phantoms
使用 3D 打印模型验证扩散 MRI 的扩散时间依赖性模型
  • 批准号:
    563744-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 48.2万
  • 项目类别:
    University Undergraduate Student Research Awards
Using 3D Printed Reservoir Rock Analogs to Validate Numerical Models
使用 3D 打印的储层岩石模拟来验证数值模型
  • 批准号:
    RGPIN-2016-06763
  • 财政年份:
    2021
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Discovery Grants Program - Individual
3D printed bespoke biodegradable drug eluting coronary artery stents produced using natural polymers
使用天然聚合物生产的 3D 打印定制可生物降解药物洗脱冠状动脉支架
  • 批准号:
    2598153
  • 财政年份:
    2021
  • 资助金额:
    $ 48.2万
  • 项目类别:
    Studentship
In situ BMSC Seeding of 3D Printed Scaffolds Using Cell-releasing Hydrogels
使用细胞释放水凝胶对 3D 打印支架进行原位 BMSC 接种
  • 批准号:
    10030953
  • 财政年份:
    2020
  • 资助金额:
    $ 48.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了