Milankovitch and Tidal Cycle History (MATCH)

米兰科维奇和潮汐周期历史(比赛)

基本信息

  • 批准号:
    NE/S009566/1
  • 负责人:
  • 金额:
    $ 75.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

The Apollo 11 moon landing on July 20 1969, was a major achievement in the history of human civilization. The rock samples brought back showed that the moon was 4.5 billion years old, and so must have formed only 200 million years or so after Earth formed. The mirrors left on the surface of the moon during the Apollo missions allowed us to very accurately measure the Earth-moon separation, and the rate at which the Earth and the Moon are moving away from each other or receding. This recession rate is estimated to be 3.8 cm/year. However, if this recession rate was constant in time, the moon would only be 1.5 billion years old, otherwise it would have been torn apart by the Earth's gravitational field. Here lies an obvious paradox: the age of the moon and the present-day recession rate do not add up!The reason the moon is receding is tidal friction: the loss of tidal energy into the ocean is gradually slowing the Earth's rotation rate and pushing the moon away from the Earth. If tidal friction is weak, the moon will recede more slowly, whilst if tidal dissipation is large, the moon will recede more quickly. However, we currently have very few reliable estimates of the dissipation of tidal energy over the history of Earth. Furthermore, these are restricted to a few time slices over the more recent Earth history (the past 250 million years). These estimates indicate that the tidal dissipation rate has not been constant over time. Work by team members have predicted the existence of a "super tidal cycle" - with a period of 400 million years - in which the tidal dissipation varies by a factor of four and is associated with continental drift.The dawn of supercomputers has facilitated the development of high-accuracy global tidal models, which allow us to simulate the tidal dissipation rates in Earth's past. From the modelled dissipation, we can compute the past lunar recession rates for a large number of time slices. The recession rates from the model will be constrained for a few periods using data from bore holes. In bore holes there are signals of long-term climate cycles laid down in the sediments, but to analyse them you need the lunar recession rate. Using a new approach developed by the team, we will analyse data from a number of holes and provide a tool to confirm the model results. The novelty of our approach being that it does not assume a constant recession rate and so allows us to achieve a step change in our understanding of the evolution of the tides globally and quantify the evolution of Earth-Moon separation on geological time-scales.Achieving this aim will allow us to better predict the evolution of the Earth-moon system by providing detailed estimates of the lunar recession rate over the past 600 million years. This has implications for ocean tides in the Earth system, for example how the tide provides energy for stirring the ocean and thus sustaining biological production and influencing the climate-controlling global ocean circulation patterns. The project results will also be important for any investigation in need of lunar recession or tidal dissipation rates, for example investigations of past climate cycles, sediment laminations, and for simulations of past climates.
1969年7月20日,阿波罗11号登月,是人类文明史上的一项重大成就。带回的岩石样本表明,月球有45亿年的历史,因此它一定是在地球形成后仅2亿年左右形成的。阿波罗任务期间留在月球表面的镜子使我们能够非常精确地测量地月距离,以及地球和月球相互远离或后退的速度。这一衰退速度估计为每年3.8厘米。然而,如果这种衰退率在时间上是恒定的,那么月球的年龄将只有15亿年,否则它将被地球的引力场撕裂。这里存在一个明显的悖论:月球的年龄和目前的经济衰退率并不相符!月球后退的原因是潮汐摩擦:潮汐能量流入海洋的损失逐渐减缓了地球的自转速度,并将月球推离地球。如果潮汐摩擦力较弱,月球的后退速度较慢,而如果潮汐耗散较大,月球的后退速度较快。然而,我们目前对地球历史上潮汐能耗散的可靠估计很少。此外,这些仅限于最近地球历史(过去2.5亿年)的几个时间片段。这些估计表明,潮汐耗散率在一段时间内并不是恒定的。研究小组成员的工作预测了一个“超级潮汐周期”的存在——周期为4亿年——在这个周期中,潮汐耗散的变化是原来的4倍,并与大陆漂移有关。超级计算机的出现促进了高精度全球潮汐模型的发展,使我们能够模拟地球过去的潮汐耗散率。根据模拟的耗散,我们可以计算出大量时间片的过去月球衰退率。使用钻孔数据,模型中的衰退率将在几个时期内受到限制。在钻孔中,沉积物中有长期气候周期的信号,但要分析它们,你需要月球衰退率。利用该团队开发的一种新方法,我们将分析来自多个洞的数据,并提供一种工具来确认模型结果。我们的方法的新颖之处在于,它没有假设一个恒定的衰退率,因此使我们能够在我们对全球潮汐演变的理解上取得一个阶段性的变化,并在地质时间尺度上量化地月分离的演变。实现这一目标将使我们能够通过提供对过去6亿年月球衰退率的详细估计,更好地预测地月系统的演变。这对地球系统中的海洋潮汐有影响,例如潮汐如何为搅动海洋提供能量,从而维持生物生产并影响控制气候的全球海洋环流模式。该项目的结果对任何需要月球衰退或潮汐耗散率的调查也很重要,例如对过去气候周期、沉积物分层的调查,以及对过去气候的模拟。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Back to the Future II: Tidal evolution of four supercontinent scenarios
回到未来II:四种超大陆情景的潮汐演化
  • DOI:
    10.5194/esd-2019-61
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Davies H
  • 通讯作者:
    Davies H
Weak tides during Cryogenian glaciations.
  • DOI:
    10.1038/s41467-020-20008-3
  • 发表时间:
    2020-12-04
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Green JAM;Davies HS;Duarte JC;Creveling JR;Scotese C
  • 通讯作者:
    Scotese C
The Tides They Are A‐Changin': A Comprehensive Review of Past and Future Nonastronomical Changes in Tides, Their Driving Mechanisms, and Future Implications
  • DOI:
    10.1029/2018rg000636
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    25.2
  • 作者:
    I. Haigh;Mark D. Pickering;J. Green;B. Arbic;A. Arns;S. Dangendorf;D. Hill;K. Horsburgh;T. Howard;D. Idier;D. Jay;Leon Jänicke;S. Lee;Malte Müller;M. Schindelegger;S. Talke;S. Wilmes;P. Woodworth
  • 通讯作者:
    I. Haigh;Mark D. Pickering;J. Green;B. Arbic;A. Arns;S. Dangendorf;D. Hill;K. Horsburgh;T. Howard;D. Idier;D. Jay;Leon Jänicke;S. Lee;Malte Müller;M. Schindelegger;S. Talke;S. Wilmes;P. Woodworth
Consequences of Tidal Dissipation in a Putative Venusian Ocean
假定的金星海洋中潮汐消散的后果
Tides on Other Earths: Implications for Exoplanet and Palaeo-Tidal Simulations
  • DOI:
    10.1029/2019gl085746
  • 发表时间:
    2020-06-28
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Blackledge, B. W.;Green, J. A. M.;Way, M. J.
  • 通讯作者:
    Way, M. J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mattias Green其他文献

Wind-mixing by storms modifies baroclinic energy flux on the Celtic Sea shelf
风暴的风混合改变了凯尔特海陆架上的斜压能量通量
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. R. Stephenson;Mattias Green;J. Hopkins;M. Inall;M. Palmer
  • 通讯作者:
    M. Palmer
The Climates of Earth’s Next Supercontinent: Effects of Tectonics, Rotation Rate, and Insolation
地球下一个超级大陆的气候:构造、自转速率和日照的影响
  • DOI:
    10.1029/2021gc009983
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    M. Way;H. Davies;J. Duarte;Mattias Green
  • 通讯作者:
    Mattias Green
Ice shelf basal melt sensitivity to tide‐induced mixing based on the theory of subglacial plumes
基于冰下羽流理论的冰架基底融化对潮汐混合的敏感性
  • DOI:
    10.1029/2022jc019156
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anselin Josephine;Reed Brad;Jenkins Adrian;Green Mattias;British Antarctic Survey;J. Anselin;B. C. Reed;A. Jenkins;J. Green;Mattias Green
  • 通讯作者:
    Mattias Green
Distribution of coastal high water level during extreme events around the UK and Irish coasts
英国和爱尔兰海岸极端事件期间沿海高水位的分布
Systematic Bias in Baroclinic Energy Estimates in Shelf Seas
陆架海斜压能量估计的系统偏差
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gordon R. Stephenson;Mattias Green;M. Inall;Gordon R. Stephenson;†. J.A.MattiasGreen
  • 通讯作者:
    †. J.A.MattiasGreen

Mattias Green的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mattias Green', 18)}}的其他基金

FASTNEt - Fluxes Across the Sloping Topography of the North East Atlantic
FASTNEt - 穿过东北大西洋倾斜地形的通量
  • 批准号:
    NE/I030208/1
  • 财政年份:
    2012
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Research Grant
Mixing in the open ocean from the Last Glacial Maximum to present date: tidal dissipation and ocean resonance
从末次盛冰期至今的开放海洋中的混合:潮汐消散和海洋共振
  • 批准号:
    NE/F014821/1
  • 财政年份:
    2008
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Fellowship

相似海外基金

Optimization of tidal turbine design to reduce wake losses in large-scale tidal energy farms
优化潮汐涡轮机设计以减少大型潮汐能发电场的尾流损失
  • 批准号:
    24K17456
  • 财政年份:
    2024
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Postdoctoral Fellowship: CREST-PRP: Ecophysiological response of tidal freshwater tree ecosystem engineers to chronic thermal, hydric, and salinity stressors in the Caribbean.
博士后奖学金:CREST-PRP:潮汐淡水树生态系统工程师对加勒比地区慢性热、水和盐压力源的生态生理反应。
  • 批准号:
    2400973
  • 财政年份:
    2024
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track K: Prototyping decision support and monitoring tools for equitable management of salt contamination of water supplies in tidal rivers
NSF 融合加速器轨道 K:为潮汐河供水盐污染的公平管理制定决策支持和监测工具原型
  • 批准号:
    2344042
  • 财政年份:
    2024
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Standard Grant
S-TGG: A novel Tidal Gravity Generator for renewable, shoreside energy in ports and harbours with high efficiency and low environmental impact
S-TGG:一种新型潮汐重力发生器,用于港口和港口的可再生岸边能源,效率高,环境影响低
  • 批准号:
    10092293
  • 财政年份:
    2024
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Collaborative R&D
Maximising tidal energy generation through Blade Scaling & Advanced Digital Engineering - MAXBlades
通过叶片缩放最大限度地提高潮汐能发电量
  • 批准号:
    10064409
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    EU-Funded
Development of Very Low Head Tidal Turbine
甚低水头潮汐涡轮机的研制
  • 批准号:
    10072702
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Collaborative R&D
Offshore Renewable Energy: wind, tidal or wave
海上可再生能源:风、潮汐或波浪
  • 批准号:
    2881261
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Studentship
Offshore Renewable Energy: wind, tidal or wave
海上可再生能源:风、潮汐或波浪
  • 批准号:
    2881265
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Studentship
tidal effects on white dwarf binaries
潮汐对白矮星双星的影响
  • 批准号:
    22KF0175
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
PFI-TT: A Cost-Effective and Scalable Tidal Current Energy Harvesting System
PFI-TT:一种经济有效且可扩展的潮汐能收集系统
  • 批准号:
    2329791
  • 财政年份:
    2023
  • 资助金额:
    $ 75.51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了