Nitrogen fixation in the Arctic Ocean
北冰洋的固氮
基本信息
- 批准号:NE/T000570/1
- 负责人:
- 金额:$ 11.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biological nitrogen fixation is the conversion of nitrogen gas (N2) to fixed nitrogen (e.g. nitrate). N2 fixation is a crucial component of global ocean biogeochemical cycles. It provides the major source of nitrogen necessary to balance nitrogen loss via denitrification and annamox and thus controls the magnitude of fixed nitrogen in the ocean, with consequences for the cycling and storage of carbon and other nutrients. Until recently, N2 fixation was thought to be restricted to the warm surface waters (20 to 30dC) of the low latitude subtropical gyres. This perception has focused decades of research on nitrogen fixation to the low latitude ocean, where other nutrients such as iron and phosphorus limit the activity of nitrogen fixers. However, there is new evidence that nitrogen fixing organisms are present and active in the cold surface waters of the Arctic Ocean. The nitrogen fixing gene has been detected in the western and central Arctic Ocean and observed rates of nitrogen are comparable to warm water nitrogen fixation. This unexpected result means that our current understanding of global nitrogen fixation is incomplete as it neglects to account for nitrogen fixation in cold waters. In addition, we do not know how temperature, light, nutrients and iron control the distribution and activity of nitrogen fixing organisms in the Arctic Ocean. There is an urgent need to better understand nitrogen fixation in the Arctic Ocean for three reasons. Firstly, the primary productivity of the Arctic Ocean is already limited by the availability of nitrate. Warming of the Arctic Ocean has caused sea ice to decline by 9% per decade since the 1970s, causing primary productivity to increase by 25%. As the Arctic Ocean warms and becomes ice free, primary production is predicted to increase. To support increased primary production, there must be an additional source of nitrate, but this source remains elusive. Inputs of nitrate from rivers, the atmosphere and dissolved organic nitrogen do not meet the nitrate demand associated with increased primary production. Nitrogen fixation may therefore be a crucial source of nitrogen in the contemporary and future Arctic Ocean and provide the fixed nitrogen necessary to support the future increase in primary production. Secondly, there is ongoing debate on the status of the nitrogen budget in the Arctic Ocean. Although the amount of nitrate entering and leaving the Arctic Ocean is equal, there is a large nitrate sink in the sediments on the Arctic shelves. This implies that either there is a large deficit in nitrate in the Arctic Ocean, or there is currently a source of nitrate that is unaccounted for. Nitrogen fixation may be the missing source required to balance the Arctic Ocean nitrogen budget. However, the lack of observations means that pan-Arctic estimates of nitrogen fixation are rudimentary. Finally, global numerical models that represent the oceanic nutrient cycling and the marine ecosystem currently ignore nitrogen fixation in the Arctic Ocean. This means that the ability of these models to predict how the Arctic ocean will respond to increased warming and increased productivity is inaccurate because they don't account for the additional nutrient source or the effect nitrogen fixation has on nutrients such as carbon, phosphorus and iron. Overall, our lack of knowledge on nitrogen fixation in the Arctic Ocean means we do not know how important this process is to global nitrogen fixation or nitrogen budget. N-ARC proposes to conduct the first holistic study of nitrogen fixation in the eastern Arctic Ocean. We chose this region for two reasons; (a) new data from N-ARC team has detected the gene responsible for nitrogen fixation in this region, providing new evidence that nitrogen fixation is occurring in the eastern Arctic Ocean and (b) there are strong gradients in temperature and nutrients, allowing us to explore how the ocean conditions control nitrogen fixation in the Arctic Ocean.
生物固氮是将氮气(N2)转化为固定氮(例如硝酸盐)。氮气固定是全球海洋生物地球化学循环的重要组成部分。它提供了通过反硝化和厌氧氧化平衡氮损失所需的主要氮源,从而控制海洋中固定氮的数量,从而对碳和其他营养物质的循环和储存产生影响。直到最近,N2 固定还被认为仅限于低纬度副热带环流的温暖表层水域(20 至 30 摄氏度)。这种看法几十年来一直将固氮研究的重点放在低纬度海洋,其中铁和磷等其他营养物质限制了固氮剂的活性。然而,有新的证据表明,北冰洋寒冷的表层海水中存在并活跃着固氮生物。已在北冰洋西部和中部检测到固氮基因,观察到的氮速率与温水固氮相当。这一意想不到的结果意味着我们目前对全球固氮的理解是不完整的,因为它忽略了冷水中的固氮。此外,我们也不知道温度、光照、营养物质和铁是如何控制北冰洋固氮生物的分布和活动的。由于三个原因,迫切需要更好地了解北冰洋的固氮作用。首先,北冰洋的初级生产力已经受到硝酸盐供应的限制。自 20 世纪 70 年代以来,北冰洋变暖导致海冰每十年减少 9%,初级生产力增加 25%。随着北冰洋变暖和无冰,初级生产预计会增加。为了支持初级生产的增加,必须有额外的硝酸盐来源,但这种来源仍然难以捉摸。来自河流、大气和溶解有机氮的硝酸盐输入不能满足与初级生产增加相关的硝酸盐需求。因此,固氮可能是当前和未来北冰洋的重要氮源,并提供支持未来初级生产增长所需的固定氮。其次,关于北冰洋氮预算状况的争论仍在继续。尽管进出北冰洋的硝酸盐量相等,但北冰洋陆架沉积物中存在较大的硝酸盐汇。这意味着要么北冰洋硝酸盐严重短缺,要么目前存在下落不明的硝酸盐来源。固氮可能是平衡北冰洋氮预算所需的缺失来源。然而,缺乏观测意味着对泛北极固氮的估计还很初级。最后,代表海洋养分循环和海洋生态系统的全球数值模型目前忽略了北冰洋的固氮作用。这意味着这些模型预测北冰洋将如何应对变暖加剧和生产力提高的能力是不准确的,因为它们没有考虑额外的营养源或固氮对碳、磷和铁等营养物的影响。总的来说,我们缺乏对北冰洋固氮的了解,意味着我们不知道这个过程对全球固氮或氮预算有多重要。 N-ARC 提议对北冰洋东部进行首次固氮整体研究。 We chose this region for two reasons; (a)N-ARC团队的新数据检测到了该地区负责固氮的基因,为北冰洋东部发生固氮提供了新证据;(b)温度和营养物质存在很强的梯度,使我们能够探索海洋条件如何控制北冰洋的固氮。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joanne Hopkins其他文献
The deepwater oxygen deficit in stratified shallow seas is mediated by diapycnal mixing
分层浅海的深水缺氧是由二重混合介导的
- DOI:
10.1038/s41467-024-47548-2 - 发表时间:
2024 - 期刊:
- 影响因子:16.6
- 作者:
T. Rippeth;Sijing Shen;B. Lincoln;B. Scannell;Xin Meng;Joanne Hopkins;Jonathan Sharples - 通讯作者:
Jonathan Sharples
Scales and structure of frontal adjustment and freshwater export in a region of freshwater influence
- DOI:
10.1007/s10236-011-0475-7 - 发表时间:
2011-08-30 - 期刊:
- 影响因子:1.900
- 作者:
Joanne Hopkins;Jeffrey A. Polton - 通讯作者:
Jeffrey A. Polton
Adverse childhood and school experiences: a retrospective cross-sectional study examining their associations with health-related behaviours and mental health
- DOI:
10.1186/s12889-025-21788-3 - 发表时间:
2025-02-18 - 期刊:
- 影响因子:3.600
- 作者:
Karen Hughes;Mark A Bellis;Kat Ford;Catherine A Sharp;Joanne Hopkins;Rebecca Hill;Katie Cresswell - 通讯作者:
Katie Cresswell
Joanne Hopkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joanne Hopkins', 18)}}的其他基金
Enhanced carbon export driven by internal tides over the mid-Atlantic ridge (CarTRidge)
大西洋中脊内潮汐推动碳输出增强 (CarTRidge)
- 批准号:
NE/X014193/1 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Research Grant
Can we detect changes in Arctic Ecosystems?
我们能否检测到北极生态系统的变化?
- 批准号:
NE/P006000/2 - 财政年份:2019
- 资助金额:
$ 11.81万 - 项目类别:
Research Grant
Primary productivity driven by escalating nutrient fluxes?
初级生产力是由不断增加的养分通量驱动的吗?
- 批准号:
NE/R012547/2 - 财政年份:2019
- 资助金额:
$ 11.81万 - 项目类别:
Research Grant
Primary productivity driven by escalating nutrient fluxes?
初级生产力是由不断增加的养分通量驱动的吗?
- 批准号:
NE/R012547/1 - 财政年份:2018
- 资助金额:
$ 11.81万 - 项目类别:
Research Grant
Can we detect changes in Arctic Ecosystems?
我们能否检测到北极生态系统的变化?
- 批准号:
NE/P006000/1 - 财政年份:2017
- 资助金额:
$ 11.81万 - 项目类别:
Research Grant
相似国自然基金
海洋微藻生物固定燃煤烟气中CO2的性能与机理研究
- 批准号:50806049
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation Potential of Mechanically Compliant Fracture Fixation Plates for Long Bone Fractures
I-Corps:用于长骨骨折的机械顺应性骨折固定板的平移潜力
- 批准号:
2410029 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
- 批准号:
24K20065 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The role of microbes in driving productivity and carbon fixation in seaweeds
微生物在提高海藻生产力和碳固定方面的作用
- 批准号:
2329475 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
Nitrogen fixation in the human gut by sulphate-reducing bacteria
硫酸盐还原菌在人体肠道中的固氮作用
- 批准号:
BB/Z514445/1 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Fellowship
MSA: Quantifying whole-stream denitrification and nitrogen fixation with integrated modeling of N2 and O2 fluxes
MSA:通过 N2 和 O2 通量的集成建模量化全流反硝化和固氮
- 批准号:
2307284 - 财政年份:2024
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
Collaborative Research: Linking iron and nitrogen sources in an oligotrophic coastal margin: Nitrogen fixation and the role of boundary fluxes
合作研究:连接寡营养海岸边缘的铁和氮源:固氮和边界通量的作用
- 批准号:
2422709 - 财政年份:2023
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
URoL:ASC: Co-producing knowledge, biotechnologies, and practices to enhance biological nitrogen fixation for sustainable agriculture
URoL:ASC:共同生产知识、生物技术和实践,以增强可持续农业的生物固氮
- 批准号:
2319430 - 财政年份:2023
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
SBIR Phase I: Design and Development of Minimally-Invasive Orthopedic Fracture Fixation Using Intramedullary Sleeve and Injectable, Light-Triggered Bone Cement
SBIR 第一阶段:使用髓内套管和可注射光触发骨水泥的微创骨科骨折固定的设计和开发
- 批准号:
2322411 - 财政年份:2023
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
Collaborative Research: Linking iron and nitrogen sources in an oligotrophic coastal margin: Nitrogen fixation and the role of boundary fluxes
合作研究:连接寡营养海岸边缘的铁和氮源:固氮和边界通量的作用
- 批准号:
2341997 - 财政年份:2023
- 资助金额:
$ 11.81万 - 项目类别:
Standard Grant
Collaborative Research: CAS-SC: Electrochemical Approaches to Sustainable Dinitrogen Fixation
合作研究:CAS-SC:可持续二氮固定的电化学方法
- 批准号:
2247257 - 财政年份:2023
- 资助金额:
$ 11.81万 - 项目类别:
Continuing Grant














{{item.name}}会员




