Advancing 3D Fuel Mapping for Wildfire Behaviour and Risk Mitigation Modelling

推进野火行为和风险缓解建模的 3D 燃料测绘

基本信息

  • 批准号:
    NE/T001194/1
  • 负责人:
  • 金额:
    $ 67.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Wildfires are a natural phenomenon in many regions of the world (e.g. the boreal and temperate North America or the Mediterranean Basin) but, in others (e.g. Atlantic Europe), they are mostly human-caused. Irrespective of their origin, wildfires burn, on average, an area equivalent to about 20 times the size of the UK every year. When they burn through populated areas they can be deadly. For example, in 2018, they resulted in 100 deaths in Greece, 99 in Portugal, and 104 in California alone. In the UK, fires have to date rarely resulted in losses of life but, on average, ~£55M are spent annually in wildfire responses and they have threatened infrastructures and communities (e.g. several wildfires last summer led to evacuations). A combination of climate and land use changes is already increasing wildfire risk in many areas, both inside and outside the UK, and this trend is expected to worsen. In order to develop more effective tools for mitigating and fighting extreme wildfires, we need to advance our ability to understand, predict and, where possible, control fire behaviour. In this project we aim to improve understanding and mitigation of wildland fire by advancing wildfire behaviour model capabilities through the development of new automated methods (algorithms) to implement, for the first time, ground-breaking real 3D fuel data into physics-based wildfire behaviour models. These models are the most advanced in terms of their ability to forecast fire behaviour, but they remain constrained by the lack of detailed fuel input information to work with (i.e. the amount and structure of live and dead vegetation susceptible to burn). The advancement we aim to deliver will provide a step-change in physical fire modelling capabilities. The new algorithms will be implemented in the powerful fuel models FUEL3D and STANDFIRE, which provide fuels inputs for the physics-based fire behaviour models FIRETEC and WFDS. We will apply these to forest stands that typify some of the most common flammable conifer forests in the UK, NW Europe and North America. The algorithms produced will be made publicly available and, therefore, can be adapted and applied to many other forest types around the world.Three-dimensional fuel datasets will be acquired in field campaigns using a range of state-of-the-art laser scanning (terrestrial, wearable and aerial UAV-based laser scanners) and 'Structure from Motion' methods, with traditional fuel inventory measurements being carried out for comparison and model validation. Our case studies will focus on conifer stands in England, Scotland, Wales and the US. In the UK, conifer forests comprise half of the UK's 3.2 Mill. ha of forested land, and they have the greatest potential for crown fires, which spread along treetops and are the most dangerous and challenging to fight. In the US, the work will include real forest fires, carried out for research purposes, which will provide valuable fire behaviour and fuel consumption datasets to validate the improved fuel and fire models. Fire behaviour depends on weather, topography, and on the type and amount of vegetation fuels, with the latter being the only factor that can be meaningfully influenced through management efforts. By managing fuels, we can reduce the risk of extreme fire behaviour and its impacts. Our project provides a novel approach for designing and testing of 'virtual fuel treatments' aimed at decreasing fuel hazard and, thus, fire risk, under current and predicted future climatic and land use scenarios. The involvement of key UK end-users (Forestry Commission, Met Office, Natural Resources Wales and South Wales Fire & Rescue Service) as partners will maximise the applicability and impact of the project's outputs. The novel 3D fuel data and algorithms will also present a major advance for other forestry applications (e.g. forestry inventory, timber forecasting, forest carbon budgeting, ecosystem services assessment).
野火是世界许多地区的自然现象(例如北美北部和温带或地中海盆地),但在其他地区(例如大西洋欧洲),它们大多是人为造成的。无论其起源如何,野火平均每年燃烧的面积相当于英国面积的20倍。当它们烧过人口稠密的地区时,它们可能是致命的。例如,2018年,它们导致希腊100人死亡,葡萄牙99人死亡,仅加州就有104人死亡。在英国,迄今为止,火灾很少导致生命损失,但平均每年花费约5500万英镑用于野火响应,它们威胁到基础设施和社区(例如,去年夏天的几场野火导致疏散)。气候和土地利用变化的结合已经增加了英国国内外许多地区的野火风险,预计这一趋势将进一步恶化。为了开发更有效的工具来减轻和扑灭极端野火,我们需要提高我们理解、预测并在可能的情况下控制火灾行为的能力。在这个项目中,我们的目标是通过开发新的自动化方法(算法)来提高野火行为模型的能力,从而首次将突破性的真实的3D燃料数据应用到基于物理的野火行为模型中,从而提高对野火的理解和缓解。这些模型在预测火灾行为的能力方面是最先进的,但由于缺乏详细的燃料输入信息(即易被燃烧的活的和死的植被的数量和结构),它们仍然受到限制。我们旨在提供的进步将提供物理火灾建模能力的一步变化。新算法将在功能强大的燃料模型FUEL3D和STANDFIRE中实施,这些模型为基于物理的火灾行为模型FIRETEC和WFDS提供燃料输入。我们将把这些应用于森林代表,代表一些最常见的易燃针叶林在英国,西北欧洲和北美。所产生的算法将公开提供,因此,可加以调整并适用于世界各地的许多其他森林类型,将在实地活动中使用一系列最先进的激光扫描获取三维燃料数据集(地面、可穿戴和空中无人机激光扫描仪)和“运动恢复结构”方法,进行传统的燃料存量测量以进行比较和模型验证。我们的案例研究将集中在英格兰,苏格兰,威尔士和美国的针叶林。在英国,针叶林占英国320万人口的一半。这些森林最有可能发生树冠火灾,这种火灾会沿着沿着蔓延,是最危险和最具挑战性的战斗。在美国,这项工作将包括出于研究目的而进行的真实的森林火灾,这将提供有价值的火灾行为和燃料消耗数据集,以验证改进的燃料和火灾模型。火的行为取决于天气、地形以及植物燃料的类型和数量,后者是唯一可以通过管理努力产生有意义影响的因素。通过管理燃料,我们可以降低极端火灾行为及其影响的风险。我们的项目提供了一种新的方法来设计和测试“虚拟燃料处理”,旨在减少燃料的危害,从而降低火灾风险,在当前和预测的未来气候和土地利用情况下。联合王国主要最终用户(林业委员会、气象局、威尔士自然资源局和南威尔士消防和救援局)作为合作伙伴的参与将最大限度地提高项目产出的适用性和影响力。新的3D燃料数据和算法也将为其他林业应用(例如林业清单,木材预测,森林碳预算,生态系统服务评估)带来重大进展。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automatic Assessment of Individual Stem Shape Parameters in Forest Stands from TLS Point Clouds: Application in Pinus pinaster
  • DOI:
    10.3390/f13030431
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    C. Prendes;E. Canga;C. Ordóñez;J. Majada;M. Acuna;Carlos Cabo
  • 通讯作者:
    C. Prendes;E. Canga;C. Ordóñez;J. Majada;M. Acuna;Carlos Cabo
The two towers: CO2 fluxes after wildfire in managed Swedish boreal forest stands
两座塔:瑞典管理的北方森林野火后的二氧化碳通量
  • DOI:
    10.5194/egusphere-egu23-12028
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelly J
  • 通讯作者:
    Kelly J
An algorithm for the automatic parametrization of wood volume equations from Terrestrial Laser Scanning point clouds: application in Pinus pinaster
  • DOI:
    10.1080/15481603.2021.1972712
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    C. Prendes;Carlos Cabo;C. Ordóñez;J. Majada;E. Canga
  • 通讯作者:
    C. Prendes;Carlos Cabo;C. Ordóñez;J. Majada;E. Canga
Optimum scale selection for 3D point cloud classification through distance correlation function
通过距离相关函数进行3D点云分类的最佳尺度选择
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Manuel Oviedo De La Fuente
  • 通讯作者:
    Manuel Oviedo De La Fuente
3D forest fuel mapping for wildfire behaviour modelling
用于野火行为建模的 3D 森林燃料测绘
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carlos Cabo
  • 通讯作者:
    Carlos Cabo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cristina Santin其他文献

Cristina Santin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

锰酸锂基复合气凝胶的3D打印构筑及其提锂机制研究
  • 批准号:
    JCZRLH202500778
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
智能3D超微血管成像联合实时剪切波弹性评估胎盘功能对高血压孕妇子痫前期的预测效能分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印楔形梯度多孔支架的优化构建及促进HTO术后骨再生修复的实验研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于3D Slicer的颅内动脉瘤破裂风险评估机器学习模型开发及临床推广应用
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
3D打印PH-GBS@CCP复合支架诱导骨肉瘤铜死亡及增效抗PD-1治疗的作用机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
双重固化3D打印连续纤维C/C复合材料成型与渗碳致密化机理研究
  • 批准号:
    2025JJ60269
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
载椎体骨髓干细胞外泌体3D打印n-HA/PA66生物支架的研制及促脊柱融合机制研究
  • 批准号:
    2025JJ80409
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于微流控技术的3D细胞培养体系构建及在乳腺癌耐药机制中应用研究
  • 批准号:
    2025JJ70487
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

3D Printed Housing Unit for PEM Fuel Cell Bi-Polar Plates
用于 PEM 燃料电池双极板的 3D 打印外壳单元
  • 批准号:
    10074750
  • 财政年份:
    2023
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Grant for R&D
Designing 3D porous nanocomposite electrode structure of fuel cell and related energy devices - guided by science-based modeling
设计燃料电池和相关能源设备的 3D 多孔纳米复合材料电极结构 - 以科学建模为指导
  • 批准号:
    570409-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Alliance Grants
Development of advanced scalable 3D spatial techniques for multi-spectral LiDAR point cloud modeling of boreal forest inventory attributes, above-ground carbon, and wildfire fuel.
开发先进的可扩展 3D 空间技术,用于北方森林库存属性、地上碳和野火燃料的多光谱 LiDAR 点云建模。
  • 批准号:
    570298-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Designing 3D porous nanocomposite electrode structure of fuel cell and related energy devices - guided by science-based modeling
设计燃料电池和相关能源设备的 3D 多孔纳米复合材料电极结构 - 以科学建模为指导
  • 批准号:
    570409-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Alliance Grants
3D-visualization of ion dynamics in protonic ceramic fuel cells
质子陶瓷燃料电池中离子动力学的 3D 可视化
  • 批准号:
    20K15023
  • 财政年份:
    2020
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improvement of ceramic 3D printing resolution by temperature control and its application to fabrication of solid oxide fuel cell electrodes
通过温度控制提高陶瓷3D打印分辨率及其在固体氧化物燃料电池电极制造中的应用
  • 批准号:
    19K04216
  • 财政年份:
    2019
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis of 2D and 3D Novel-Carbon-Based Materials for the Application in Fuel Cells
用于燃料电池应用的 2D 和 3D 新型碳基材料的合成
  • 批准号:
    18F18063
  • 财政年份:
    2018
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Enabling 3D atomic-scale imaging of hydrogen to investigate hydrogen embrittlement of zirconium alloy fuel cladding in fission reactors
实现氢的 3D 原子级成像以研究裂变反应堆中锆合金燃料包壳的氢脆
  • 批准号:
    2113345
  • 财政年份:
    2018
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Studentship
Pt free fuel cell electrocatalysts composed of 3D graphene and non-precious metal nano particles
由3D石墨烯和非贵金属纳米颗粒组成的无铂燃料电池电催化剂
  • 批准号:
    17F17345
  • 财政年份:
    2017
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
3D Printing for Efficient Fabrication of Fuel Cells for Power Generation
用于高效制造发电燃料电池的 3D 打印
  • 批准号:
    1936238
  • 财政年份:
    2017
  • 资助金额:
    $ 67.18万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了