JDec: Joint decision models for citizens, crops, and environment
JDec:公民、农作物和环境的联合决策模型
基本信息
- 批准号:NE/T004134/1
- 负责人:
- 金额:$ 6.42万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will adapt decision-theoretic tools to agri-environmental management, a domain that has been underserved by mathematical methodology. The process of decision-making within an agricultural context is complex, because it spans multiple interdependent stages, and involves many risks along the way. Decisions - when to apply pesticides, how much to apply, when to prune, when to water, even when to harvest - can affect crucially the produce quantity and quality, and hence the short-term success of the enterprise. The decisions will also determine the extent of environmental harm, which have been challenging to define, as is the value of "services" provided by the ecosystem. To facilitate their inclusion in decision-making we develop models that are more flexible and more holistic than common frameworks in operational research. First, outcomes need to be valued by utility functions that reflect costs and benefits comprehensively. Among other things, they need to be evaluated along decision trajectories, including appropriate levels of memory and foresight, and interdependencies along the way. For example, a herbicide treatment may look effective only as long as its indirect effect is ignored on the wild pollinators that had visited the weeds, and whose loss will need to be compensated with new costs.Second, in an agricultural-environmental context, decisions are not taken by humans alone. A modelling approach looking at decisions being taken jointly by all three --- the farmer, the crop and the environment --- opens the flexibility needed to deal with interactions. We further allow for a higher level of uncertainty, in that the influence each of these agents has may itself depend on random events.Third, our models acknowledge the temporal dimension and potential resource allocation constraints. In a large, interconnected, multi-stage system of land and resource management, past actions influence future decisions. Adding rapidly changing environment, with extreme weather events increasing in frequency, shifting pest and pollinator ranges, and resource depletion, we need to take account of the need for robust approximate solutions in model development. In other words, the challenges of having to make decisions in the "real world in real time" requires a paradigm for "good enough" decision-making, and a conceptualisation of the gap it has to optimal solutions. Our major objective is to build the mathematical and statistical framework for decision modelling that covers these three aspects. Our work extends existing approaches by building in more flexible mechanisms for uncertainty and interdependencies. Key ideas from behavioural sciences will move us beyond a narrow rationality framework. Subject to data availability, our resulting theory will be applicable to both small and large landscape scales.We will explore these ideas in two case studies. The first is a system of wild pollinators in apple orchards, a particularly suitable testing ground for understanding indirect effects at the frontier between managed land and its surrounding landscape. The second case study explores the use of decision modelling in a large farm scale experiment with 4 crops and multiple intervention methods. It provides a rich data set for comparing decision strategies. Our work can directly benefit many citizens: not only crop scientists and land managers, but also ecologists, conservationists, local authorities, charities and policy-makers. The tools we are designing will open up to the field sciences an approach that has been used with great success in a variety of other disciplines. With better tools, such as the ones we are proposing, environmentally-conscious actions taken to feed a growing population in a changing climate can be dynamic, adaptable, and sustainable.
该项目将使决策理论工具适用于农业环境管理,这是一个数学方法学服务不足的领域。农业背景下的决策过程很复杂,因为它跨越多个相互依存的阶段,并且沿着许多风险。决定-何时施用杀虫剂、施用多少、何时修剪、何时浇水,甚至何时收获-会对产品的数量和质量产生至关重要的影响,从而影响企业的短期成功。这些决定还将确定环境损害的程度,这一直是一个难以界定的问题,生态系统提供的“服务”的价值也是如此。为了促进他们在决策中的包容性,我们开发了比运筹学中的常见框架更灵活,更全面的模型。首先,需要通过全面反映成本和收益的效用函数来评估成果。除其他外,它们需要沿着决策轨迹进行评估,包括适当的记忆和远见水平,以及沿途的相互依赖性。例如,除草剂处理可能看起来有效,只要它的间接影响被忽视的野生传粉者访问杂草,其损失将需要补偿新的成本。第二,在农业环境背景下,决定不是由人类独自作出的。一种着眼于所有三个方面-农民、作物和环境-共同作出决定的建模方法,为处理相互作用提供了所需的灵活性。我们进一步考虑到更高水平的不确定性,因为这些代理的影响可能本身就取决于随机事件。第三,我们的模型承认时间维度和潜在的资源分配约束。在一个庞大的、相互关联的、多阶段的土地和资源管理系统中,过去的行动影响着未来的决策。加上快速变化的环境,极端天气事件的频率增加,改变害虫和传粉者的范围,以及资源枯竭,我们需要考虑到在模型开发中需要强大的近似解决方案。换句话说,必须在“真实的时间内的真实的世界”中做出决策的挑战需要一个“足够好”的决策范式,以及对它与最佳解决方案之间的差距的概念化。我们的主要目标是建立涵盖这三个方面的决策建模的数学和统计框架。我们的工作通过建立更灵活的不确定性和相互依赖性机制来扩展现有方法。行为科学的关键思想将使我们超越狭隘的理性框架。根据数据的可用性,我们的理论将适用于小型和大型景观尺度。我们将在两个案例研究中探讨这些想法。第一个是苹果园中的野生传粉者系统,这是一个特别适合了解管理土地及其周围景观之间边界的间接影响的试验场。第二个案例研究探讨了决策模型在一个大型农场规模的实验中的应用,该实验有4种作物和多种干预方法。它为比较决策策略提供了丰富的数据集。我们的工作可以直接惠及许多公民:不仅是作物科学家和土地管理者,还包括生态学家、环保人士、地方当局、慈善机构和政策制定者。我们正在设计的工具将向领域科学开放,这种方法已经在各种其他学科中取得了巨大成功。有了更好的工具,比如我们提出的工具,在不断变化的气候中为养活不断增长的人口而采取的环保行动可以是动态的、适应性强的和可持续的。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data management challenges for artificial intelligence in plant and agricultural research.
- DOI:10.12688/f1000research.52204.2
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Data management challenges for artificial intelligence in plant and agricultural research
植物和农业研究中人工智能的数据管理挑战
- DOI:10.12688/f1000research.52204.1
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Williamson H
- 通讯作者:Williamson H
Wide Framing Disposition Effect: An Empirical Study
- DOI:10.2139/ssrn.3778099
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:J. Brettschneider;Giovanni Burro;Vicky Henderson
- 通讯作者:J. Brettschneider;Giovanni Burro;Vicky Henderson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Brettschneider其他文献
Comparison between adjuvant! Online and PREDICT
- DOI:
10.1016/j.ejso.2013.01.201 - 发表时间:
2013-05-01 - 期刊:
- 影响因子:
- 作者:
Shan Cheung;Julia Brettschneider - 通讯作者:
Julia Brettschneider
Shannon–McMillan theorems for discrete random fields along curves and lower bounds for surface-order large deviations
- DOI:
10.1007/s00440-007-0112-z - 发表时间:
2007-11-28 - 期刊:
- 影响因子:1.600
- 作者:
Julia Brettschneider - 通讯作者:
Julia Brettschneider
Julia Brettschneider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于双稳健共享参数Joint模型的脑卒中早期关键风险因素推断研究
- 批准号:81803337
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of optimal joint strategies and an intelligent decision model for lockout/tagout, maintenance and production in a smart manufacturing context
开发智能制造背景下的上锁/挂牌、维护和生产的最佳联合策略和智能决策模型
- 批准号:
577072-2022 - 财政年份:2022
- 资助金额:
$ 6.42万 - 项目类别:
Alliance Grants
An Examination of the Joint Contributions of Socioeconomic Disadvantage, Genetics, and COVID-19 on the Development of Delay Discounting and Substance Use Across Adolescence
社会经济劣势、遗传学和 COVID-19 对青春期延迟贴现和药物使用发展的共同贡献的检验
- 批准号:
10689142 - 财政年份:2022
- 资助金额:
$ 6.42万 - 项目类别:
An Examination of the Joint Contributions of Socioeconomic Disadvantage, Genetics, and COVID-19 on the Development of Delay Discounting and Substance Use Across Adolescence
社会经济劣势、遗传学和 COVID-19 对青春期延迟贴现和药物使用发展的共同贡献的检验
- 批准号:
10583195 - 财政年份:2022
- 资助金额:
$ 6.42万 - 项目类别:
Joint modeling of continuous and binary data in meta-analysis
荟萃分析中连续数据和二进制数据的联合建模
- 批准号:
10350742 - 财政年份:2021
- 资助金额:
$ 6.42万 - 项目类别:
Joint modeling of continuous and binary data in meta-analysis
荟萃分析中连续数据和二进制数据的联合建模
- 批准号:
10535479 - 财政年份:2021
- 资助金额:
$ 6.42万 - 项目类别:
Joint modeling of continuous and binary data in meta-analysis
荟萃分析中连续数据和二进制数据的联合建模
- 批准号:
10793351 - 财政年份:2021
- 资助金额:
$ 6.42万 - 项目类别:
Developing statistical models to explain and forecast joint decision making
开发统计模型来解释和预测联合决策
- 批准号:
2441958 - 财政年份:2020
- 资助金额:
$ 6.42万 - 项目类别:
Studentship
The Discontinuity Effect: The Interaction of Joint Decision-Making with Formal and Informal Sanction Mechanisms
不连续性效应:联合决策与正式和非正式制裁机制的相互作用
- 批准号:
2204999 - 财政年份:2019
- 资助金额:
$ 6.42万 - 项目类别:
Studentship
Joint structural-and-functional MRI analysis for predicting electroconvulsive therapy response in major depressive disorder
联合结构和功能 MRI 分析预测重度抑郁症的电休克治疗反应
- 批准号:
10471260 - 财政年份:2019
- 资助金额:
$ 6.42万 - 项目类别:
Joint structural-and-functional MRI analysis for predicting electroconvulsive therapy response in major depressive disorder
联合结构和功能 MRI 分析预测重度抑郁症的电休克治疗反应
- 批准号:
10225993 - 财政年份:2019
- 资助金额:
$ 6.42万 - 项目类别: