Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings

地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架

基本信息

  • 批准号:
    NE/T012455/1
  • 负责人:
  • 金额:
    $ 31.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The theory of plate tectonics revolutionised the Earth sciences and had impacts across society, by providing a framework to understand the motion of Earth's surface. However, plate tectonic theory does not tell us about the processes deeper in the Earth that drive plate motions, nor does it explain some of the most dramatic events in Earth history: the breakup of plates and outpouring of huge volumes of lava. The next required breakthrough is to make this leap, from a 2D description of plates to understanding the truly 4D nature of Earth's interior processes.Motion of the Earth's interior, its circulation, involves both upwelling and downwelling. The upwelling flow in the Earth remains enigmatic, occurring in the present-day as both hot focused plumes, which are only just observable through modern seismic imaging techniques, and a hypothesised diffuse flow, which has evaded detection entirely. A third mode of mantle upwelling is currently dormant, making its mantle flow signature unknown. However, this dormant mode of flow drives massive outpourings of lava, and has been associated with continental breakup and mass extinction events.Our project's overall goal is to constrain how mantle upwellings operate within the Earth. We will investigate how plate tectonics is linked to mantle circulation, by combining the history of plate movements across Earth's surface with observations drawn from across the geosciences, and use these to constrain state-of-the-art 4D computational models of mantle flow.These advances are made possible by recent progress in disciplines from across the Earth sciences, expertise we bring together here in geodynamics, seismology, geomagnetism, geochemistry, petrology, and thermodynamics. We will constrain present mantle flow by gathering new seismic imaging data of the Earth's deep interior. We will constrain past mantle flow using newly collected data on the mantle's composition, past magnetic field, and the history of Earth's surface uplift. We will use these multidisciplinary approaches to generate the most spatially and temporally complete set of observational constraints on mantle circulation yet assembled.These observations will be used to constrain and improve models that calculate mantle circulation in an Earth-like 3D geometry, driven by plate motion histories (mantle circulation models, MCMs). This is a timely development capitalising on the only recently available record of plate motion over 1 billion years of Earth History. The MCMs predict the mantle's temperature, density, and velocity through time, providing a 4D model of the Earth. Uncertain inputs in these models such as mantle viscosity and composition will be investigated within the bounds provided by the project's geochemical and thermodynamic work packages that will develop new models of Earth's high pressure mineralogy and physical properties. We will test the present-day predictions of the MCMs by converting model outputs to predict density and material properties within the Earth, using our developments on mineral physics modelling. With these inputs and constraints, we will create the first accurate computational models of mantle circulation over the last 1 billion years, which will provide dynamical insight into what drives the diversity of upwellings in the Earth.This tightly integrated multidisciplinary project is absolutely essential to achieve the best constrained MCMs and advance our understanding of Earth's interior processes. The result will be a coherent mantle circulation record of one quarter of Earth's history, and a major advance in our understanding of how mantle upwellings have impacted planetary evolution over this period.
板块构造理论通过提供一个理解地球表面运动的框架,彻底改变了地球科学,并对整个社会产生了影响。然而,板块构造理论并没有告诉我们地球深处驱动板块运动的过程,也没有解释地球历史上一些最戏剧性的事件:板块的分裂和大量熔岩的涌出。下一个需要突破的是实现这一飞跃,从二维板块描述到了解地球内部过程的真正四维性质。地球内部的运动,即它的循环,包括上升流和下升流。地球上的上升流仍然是一个谜,既以热聚焦羽流的形式出现,这只能通过现代地震成像技术观察到,也以一种假设的漫射流的形式出现,这完全躲过了探测。第三种模式的地幔上涌目前处于休眠状态,使其地幔流动特征未知。然而,这种休眠模式的流动驱动了大量熔岩的喷发,并与大陆分裂和大规模灭绝事件有关。我们项目的总体目标是限制地幔上涌是如何在地球内部运作的。我们将研究板块构造是如何与地幔循环联系起来的,通过将地球表面板块运动的历史与来自地球科学的观测相结合,并利用这些来约束最先进的4D地幔流计算模型。这些进步得益于地球科学各学科的最新进展,以及我们在地球动力学、地震学、地磁、地球化学、岩石学和热力学方面汇集的专业知识。我们将通过收集地球深部的新地震成像数据来限制目前的地幔流动。我们将使用新收集的关于地幔成分、过去磁场和地球表面隆起历史的数据来约束过去的地幔流动。我们将使用这些多学科方法来生成迄今为止在空间和时间上最完整的地幔环流观测约束集。这些观测结果将用于约束和改进由板块运动历史驱动的类似地球的三维几何形状的地幔环流计算模型(地幔环流模型,mcm)。这是一个及时的发展,利用了最近唯一可用的地球历史上超过10亿年的板块运动记录。mcm预测了地幔的温度、密度和速度随时间的变化,提供了地球的4D模型。这些模型中的不确定输入,如地幔粘度和成分,将在项目的地球化学和热力学工作包提供的范围内进行研究,这些工作包将开发新的地球高压矿物学和物理特性模型。我们将通过转换模型输出来预测地球内部的密度和材料特性,利用我们在矿物物理建模方面的发展,来测试mcm的当前预测。有了这些输入和限制,我们将创建过去10亿年地幔循环的第一个精确的计算模型,这将为驱动地球上升流多样性的动力提供见解。这个紧密结合的多学科项目对于实现最佳约束mcm和推进我们对地球内部过程的理解是绝对必要的。结果将是地球四分之一历史的连贯的地幔循环记录,并且在我们理解地幔上涌如何影响这一时期的行星演化方面取得了重大进展。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Extended Calibration of the Olivine-Spinel Aluminum Exchange Thermometer: Application to the Melting Conditions and Mantle Lithologies of Large Igneous Provinces
橄榄石-尖晶石铝交换温度计的扩展校准:在大型火成岩省的熔化条件和地幔岩性中的应用
  • DOI:
    10.1093/petrology/egad077
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhang Y
  • 通讯作者:
    Zhang Y
The evolution of the Galápagos mantle plume.
  • DOI:
    10.1126/sciadv.add5030
  • 发表时间:
    2023-03-10
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
  • 通讯作者:
The composition and weathering of the continents over geologic time
  • DOI:
    10.7185/geochemlet.2109
  • 发表时间:
    2021-03-02
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Lipp, A. G.;Shorttle, O.;Yang, J.
  • 通讯作者:
    Yang, J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oliver Shorttle其他文献

Distinguishing Oceans of Water from Magma on Mini-Neptune K2-18b
迷你海王星 K2-18b 上区分水海洋和岩浆
  • DOI:
    10.3847/2041-8213/ad206e
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oliver Shorttle;S. Jordan;Harrison Nicholls;T. Lichtenberg;D. Bower
  • 通讯作者:
    D. Bower
A dry Venusian interior constrained by atmospheric chemistry
受大气化学限制的干燥金星内部
  • DOI:
    10.1038/s41550-024-02414-5
  • 发表时间:
    2024-12-02
  • 期刊:
  • 影响因子:
    14.300
  • 作者:
    Tereza Constantinou;Oliver Shorttle;Paul B. Rimmer
  • 通讯作者:
    Paul B. Rimmer
A Surface Hydrothermal Source of Nitriles and Isonitriles
腈和异腈的地表热液源
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Rimmer;Oliver Shorttle
  • 通讯作者:
    Oliver Shorttle
From Stars to Diverse Mantles, Melts, Crusts, and Atmospheres of Rocky Exoplanets
从恒星到岩石系外行星的各种地幔、熔体、地壳和大气层
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Guimond;Haiyang Wang;Fabian Seidler;Paolo A. Sossi;Aprajit Mahajan;Oliver Shorttle
  • 通讯作者:
    Oliver Shorttle
The Distribution of Impactor Core Material During Large Impacts on Earth-like Planets
对类地行星进行大撞击时撞击器核心材料的分布
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Itcovitz;Auriol S. P. Rae;T. Davison;G. Collins;Oliver Shorttle
  • 通讯作者:
    Oliver Shorttle

Oliver Shorttle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oliver Shorttle', 18)}}的其他基金

Unlocking the C and N budget of the Earth
解锁地球的碳和氮预算
  • 批准号:
    NE/V011383/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant

相似海外基金

Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T01248X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T012536/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T012463/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T012633/1
  • 财政年份:
    2020
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T012641/1
  • 财政年份:
    2020
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T01248X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T012501/1
  • 财政年份:
    2020
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T012595/1
  • 财政年份:
    2020
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
Mantle Circulation Constrained (MC2): A multidisciplinary 4D Earth framework for understanding mantle upwellings
地幔环流约束 (MC2):用于理解地幔上升流的多学科 4D 地球框架
  • 批准号:
    NE/T012684/1
  • 财政年份:
    2020
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grant
POPC4OM: Understanding population controls on cloud-circulation coupling based on observationally-constrained modeling
POPC4OM:基于观测约束建模了解云-环流耦合的种群控制
  • 批准号:
    434804401
  • 财政年份:
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了