POLYGRAM: POLYisotopologues of GReenhouse gases: Analysis and Modelling

POLYGRAM:温室气体的多同位素体:分析和建模

基本信息

项目摘要

The greenhouse gases carbon dioxide (CO2) and methane (CH4) are by far the biggest contributors to recent and ongoing climate change. Of all the known greenhouse gases (excluding water vapour), CO2 and CH4 have the highest concentrations in the atmosphere and they are rising rapidly. CO2 is particularly problematic because there is so much of it (about 200 times more than CH4) and because once emitted to the atmosphere, much of it will stay there for several hundred years. Whereas, by comparison, CH4 has a lifetime in the atmosphere of about a decade, but it is a much more potent greenhouse gas than CO2 - that is, for equal amounts of CO2 and CH4 in the atmosphere, CH4 will trap heat radiation about 70 times more effectively than CO2 (over a 20-year time period).With the ratification of the Paris Agreement, the world has committed to avoiding dangerous climate change and the most obvious way to do this is by reducing emissions of CO2 and CH4. How will we know if emission mitigation policies are effective? Which nations or regions are meeting their emissions reduction targets? How will natural CO2 and CH4 fluxes respond to extreme weather events? And which aspects of the carbon cycle remain unsolved? For example, despite decades of study, scientists are still not sure why CH4 emissions are currently rising. To answer these questions we need to be able to measure and quantify CO2 and CH4 emissions and concentrations, and have the ability to separately quantify natural and manmade sources. Our current abilities to do so are severely limited, especially for CH4, which has a diverse array of natural and manmade sources. If we cannot determine the effectiveness of mitigation policies, then our ability to predict climate change impacts will be compromised by large uncertainties.'Polyisotopologues' are one very promising new tool for distinguishing between different source emissions. The chemical elements that make up CO2 and CH4 molecules (carbon (C), oxygen (O) and hydrogen (H)) can have different masses, called isotopes. Different sources can have different isotopic 'fingerprints' or 'signatures' (because source reaction processes may favour a lighter or heavier molecule), thus measuring isotopic signatures is a useful way to gain insight into sources. Isotopic measurements have been made routinely for several decades; whereas the state-of-the-art technology developed in this project would allow us to measure molecules with more than one rare isotope. For example, most C has a relative atomic mass of 12 and H a mass of 1. The rarer isotopes of C and H have masses of 13 and 2, respectively. Isotopologues of CH4, which are measured routinely, include 12CH4, 13CH4 and 12CH3D (where 'D' represents the heavy H atom with mass 2). Whereas polyisotopologues of CH4 include 13CH3D and 12CH2D2 - these are far more challenging to measure, yet could provide invaluable insight into source emissions and sinks.POLYGRAM (POLYisotopologues of GReenhouse gases: Analysis and Modelling) will push the frontiers for both CO2 and CH4 polyisotopologue measurement capability using the latest advances in laser spectroscopic analysis and very high-resolution isotope ratio mass spectrometry. In addition to these challenging technological developments, we will establish a small global atmospheric sampling network to examine latitudinal and longitudinal variations in polyisotopologues, which will help us to constrain overall global budgets of CO2 and CH4. We will carry out field campaigns to determine polyisotopologue source signatures, for example, of CH4 from wetlands, cattle and landfills, and of CO2 from plant photosynthesis and respiration, and from fossil fuel burning. We will conduct laboratory experiments to estimate the reaction rates for CH4 isotopologues when they are oxidised and destroyed in the atmosphere. Finally, we will carry out atmospheric transport modelling for both gases to better interpret and understand the measurements.
温室气体二氧化碳(CO2)和甲烷(CH 4)是迄今为止造成近期和持续气候变化的最大因素。在所有已知的温室气体(不包括水蒸气)中,二氧化碳和甲烷在大气中的浓度最高,而且正在迅速上升。二氧化碳是一个特别的问题,因为它有这么多(约200倍以上的甲烷),因为一旦排放到大气中,其中大部分将停留在那里几百年。然而,相比之下,CH 4在大气中的寿命约为十年,但它是比CO2更有效的温室气体-也就是说,对于大气中等量的CO2和CH 4,CH 4将比CO2更有效地捕获热辐射约70倍(20年期间)。随着《巴黎协定》的批准,全世界都致力于避免危险的气候变化,最明显的方法就是减少二氧化碳和甲烷的排放。我们如何知道减排政策是否有效?哪些国家或地区正在实现其减排目标?自然CO2和CH 4通量如何应对极端天气事件?碳循环的哪些方面尚未解决?例如,尽管经过几十年的研究,科学家们仍然不确定为什么甲烷排放量目前正在上升。为了回答这些问题,我们需要能够测量和量化CO2和CH 4的排放量和浓度,并能够分别量化自然和人为来源。我们目前这样做的能力受到严重限制,特别是对于CH 4,它有各种各样的自然和人造来源。如果我们不能确定减缓政策的有效性,那么我们预测气候变化影响的能力将受到很大的不确定性的影响。“多同位素体”是区分不同来源排放的一种非常有前途的新工具。组成CO2和CH 4分子的化学元素(碳(C),氧(O)和氢(H))可以具有不同的质量,称为同位素。不同的来源可能有不同的同位素“指纹”或“签名”(因为源反应过程可能有利于较轻或较重的分子),因此测量同位素签名是了解来源的有用方法。同位素测量已经常规进行了几十年;而在这个项目中开发的最先进的技术将使我们能够测量具有一种以上稀有同位素的分子。例如,大多数C的相对原子质量为12,H的相对原子质量为1。C和H的稀有同位素质量分别为13和2。常规测量的CH 4的同位素体包括12 CH 4、13 CH 4和12 CH 3D(其中“D”代表质量为2的重H原子)。而CH 4的多同位素包括13 CH 3D和12 CH 2D 2--这些测量更具挑战性,但可以提供对源排放和汇的宝贵见解。POLYNOTE(GREENHOUSE气体的多同位素:分析和建模)将利用激光光谱分析和极高分辨率同位素比质谱法的最新进展推动CO2和CH 4多同位素测量能力的前沿。除了这些具有挑战性的技术发展外,我们还将建立一个小型的全球大气采样网络,以检查多同位素的纬度和经度变化,这将有助于我们限制全球二氧化碳和甲烷的总体预算。我们将开展实地活动,以确定多同位素来源特征,例如,来自湿地、牛和垃圾填埋场的甲烷,来自植物光合作用和呼吸作用以及化石燃料燃烧的二氧化碳。我们将进行实验室实验,以估计甲烷同位素在大气中氧化和破坏时的反应速率。最后,我们将对这两种气体进行大气传输建模,以更好地解释和理解测量结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthieu Clog其他文献

Near-zero sup33/supS and sup36/supS anomalies in Pitcairn basalts suggest Proterozoic sediments in the EM-1 mantle plume
  • DOI:
    10.1016/j.epsl.2022.117422
  • 发表时间:
    2022-04-15
  • 期刊:
  • 影响因子:
    5.100
  • 作者:
    Jabrane Labidi;James W. Dottin;Matthieu Clog;Christophe Hemond;Pierre Cartigny
  • 通讯作者:
    Pierre Cartigny

Matthieu Clog的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

POLYGRAM - POLYisotopologues of GReenhouse gases: Analysis and Modelling
POLYGRAM - 温室气体的多同位素体:分析和建模
  • 批准号:
    NE/V006991/1
  • 财政年份:
    2020
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Research Grant
POLYGRAM: POLYisotopologues of GReenhouse gases: Analysis and Modelling
POLYGRAM:温室气体的多同位素体:分析和建模
  • 批准号:
    NE/V007149/1
  • 财政年份:
    2020
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Research Grant
POLYGRAM - POLYisotopologues of GReenhouse gases: Analysis and Modelling
POLYGRAM - 温室气体的多同位素体:分析和建模
  • 批准号:
    NE/V007203/1
  • 财政年份:
    2020
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Research Grant
POLYGRAM: POLYisotopologues of GReenhouse gases: Analysis and Modelling
POLYGRAM:温室气体的多同位素体:分析和建模
  • 批准号:
    NE/V006924/1
  • 财政年份:
    2020
  • 资助金额:
    $ 63.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了