Optimising the Design of Ensembles to Support Science and Society (ODESSS)

优化集成设计以支持科学和社会 (ODESSS)

基本信息

项目摘要

This project will build the foundational techniques needed to understand what is necessary from an ensemble of computer model simulations to provide robust reliable knowledge. Such knowledge includes progress in scientific understanding of complex multi-component systems on the one hand, and guidance for societal decisions on the other. The focus is on climate models, where ensembles are a core element of research activities. The research will involve, indeed requires, integrating expertise across a range of disciplines.Global climate models (GCMs) are complex, high-dimensional, discretized systems. They use the latest computer technology to solve a large number of simultaneous differential equations. Different disciplines and researchers view them in radically different ways and hence have very different perspectives on how to explore their errors and uncertainties. For physicists they are interpreted as representing physical understanding so the term "model error" encompasses their failure to effectively represent what we know about physical processes. For nonlinear dynamicists they are high dimensional systems of nonlinear equations so there is an expectation that profoundly different results could potentially arise as a consequence of uncertainty in both initial conditions and model formulation (model errors) of even the smallest degree. For risk analysts and forecasters they are generators of timeseries from which errors can be judged by relation to historic observations, although physicists and statisticians might be concerned that the extrapolatory nature of the climate change problem undermines such an assessment. For "users" such as adaptation planners and policy makers they provide climate projections which represent the starting point for their own work; any uncertainties provided by the scientists are assumed to be reliable estimates of the best current knowledge. This variety of perspectives leads to many different ways of interpreting the errors and uncertainties, and creates conflicting demands on the models themselves.Projection uncertainties are typically quantified from ensembles of simulations which come in a variety of shapes and sizes. These ensembles are used to explore the impact of initial condition uncertainty (ICU - the consequence of not knowing the current state of the climate system when trying to make simulations of the future) and of model uncertainty (MU - the consequence of our models being different from reality). Today's ensembles (and models) have been built under the constraint of limited computational capacity so their designs start from the question: "what's the best we can do with today's technology?" By contrast, one of the unique and innovative aspects of this project is that its starting point is "what type and size of ensembles are necessary to provide the information we want?" It will develop designs for "aspirational ensembles" i.e. ensembles that are necessary to answer a particular set of questions without regard to current computational limitations. From this foundation it will evaluate the best way to approach the trade-offs necessary in building practical ensembles which DO allow for current computational limitations. The approach taken will be twofold. First will be to use low-dimensional nonlinear systems to study the consequences of nonlinearity for ensemble design in climate like situations. Second will be to build a collaborative, collective picture of the demands and constraints on model ensembles from a wide range of different disciplinary and national perspectives.The project will provide a solid foundation for future ensemble designs and will inform the widely debated computational conflict between uncertainty exploration, resolution and complexity. The latter two of these are much studied but there has been no comprehensive assessment of former. This project will fill that gap from the perspective of what is needed rather than what is available.
该项目将构建所需的基础技术,以了解计算机模型模拟集合所需的内容,以提供可靠的知识。这些知识一方面包括对复杂多成分系统的科学理解的进展,另一方面包括对社会决策的指导。重点是气候模型,其中集合是研究活动的核心要素。这项研究确实需要整合跨学科的专业知识。全球气候模型(GCM)是复杂的、高维的、离散的系统。他们利用最新的计算机技术来求解大量的联立微分方程。不同的学科和研究人员以截然不同的方式看待它们,因此对于如何探索它们的错误和不确定性有非常不同的观点。对于物理学家来说,它们被解释为代表物理理解,因此术语“模型错误”涵盖了它们未能有效地代表我们对物理过程的了解。对于非线性动力学家来说,它们是非线性方程的高维系统,因此预计由于初始条件和模型公式(模型误差)的不确定性,即使是最小程度的不确定性,也可能会出现截然不同的结果。对于风险分析师和预报员来说,他们是时间序列的生成者,可以通过与历史观测的关系来判断错误,尽管物理学家和统计学家可能担心气候变化问题的外推性质会破坏这种评估。对于适应规划者和政策制定者等“用户”,他们提供气候预测,这代表了他们自己工作的起点;科学家提供的任何不确定性都被认为是对当前最佳知识的可靠估计。这种不同的观点导致了解释错误和不确定性的许多不同方式,并对模型本身产生了相互冲突的要求。投影不确定性通常是通过具有各种形状和大小的模拟集合来量化的。这些集合用于探索初始条件不确定性(ICU - 在尝试模拟未来时不知道气候系统当前状态的后果)和模型不确定性(MU - 我们的模型与现实不同的后果)的影响。当今的集成(和模型)是在有限的计算能力的约束下构建的,因此它们的设计从以下问题开始:“我们利用当今的技术能做的最好的事情是什么?”相比之下,该项目的独特和创新之处之一是其出发点是“需要什么类型和规模的集成来提供我们想要的信息?”它将开发“理想集成”的设计,即在不考虑当前计算限制的情况下回答一组特定问题所必需的集成。在此基础上,它将评估在构建实际集成时所需权衡的最佳方法,这些集成允许当前的计算限制。采取的方法将是双重的。首先是使用低维非线性系统来研究非线性对类似气候情况下的集合设计的影响。其次是从广泛的不同学科和国家角度构建模型集成的需求和约束的协作、集体图景。该项目将为未来的集成设计提供坚实的基础,并将为不确定性探索、解决和复杂性之间广泛争论的计算冲突提供信息。对后两者进行了很多研究,但对前两者还没有进行全面的评估。该项目将从需求而不是可用的角度来填补这一空白。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Progess in non-Markovian (and Fractional) StochasticClimate Modelling: A GLE-based perspective
非马尔可夫(和分数)随机气候建模的进展:基于 GLE 的观点
  • DOI:
    10.5194/egusphere-egu23-9433
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Watkins N
  • 通讯作者:
    Watkins N
Ensemble Design: Sensitivity Beyond Initial Values
集成设计:超越初始值的灵敏度
  • DOI:
    10.5194/egusphere-egu23-14148
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stainforth D
  • 通讯作者:
    Stainforth D
The evolution of a non-autonomous chaotic system under non-periodic forcing: A climate change example.
非周期强迫下非自治混沌系统的演化:气候变化的例子。
  • DOI:
    10.1063/5.0180870
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    De Melo Viríssimo F
  • 通讯作者:
    De Melo Viríssimo F
Climate nonlinearities: selection, uncertainty, projections, and damages
  • DOI:
    10.1088/1748-9326/ac8238
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Cael, B. B.;Britten, G. L.;Goodwin, P.
  • 通讯作者:
    Goodwin, P.
A low-dimensional dynamical systems approach to climate ensemble design and interpretation
气候集合设计和解释的低维动力系统方法
  • DOI:
    10.5194/egusphere-egu23-14755
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    De Melo Viríssimo F
  • 通讯作者:
    De Melo Viríssimo F
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Stainforth其他文献

David Stainforth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Stainforth', 18)}}的其他基金

RAPID-RAPIT
快速
  • 批准号:
    NE/G015392/1
  • 财政年份:
    2009
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Research Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

Exploiting DNS in 3D Design
在 3D 设计中利用 DNS
  • 批准号:
    2777188
  • 财政年份:
    2026
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Studentship
Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Studentship
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
  • 批准号:
    2593424
  • 财政年份:
    2025
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Studentship
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Continuing Grant
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Standard Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Blending Socioeconomic-Inclusive Design into Undergraduate Computing Curricula to Build a Larger Computing Workforce
HSI 实施和评估项目:将社会经济包容性设计融入本科计算机课程,以建立更大规模的计算机队伍
  • 批准号:
    2345334
  • 财政年份:
    2024
  • 资助金额:
    $ 82.67万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了