NI: Enhancing global hydrological models with local knowledge
NI:利用当地知识增强全球水文模型
基本信息
- 批准号:NE/W004550/1
- 负责人:
- 金额:$ 10.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The assessment of water resources at both the global and regional scales is currently a major concern for scientists and policy makers due to the increasing incidence of water scarcity and extreme water-related hazards affecting the globe in the last 50 years. This concern will become even more relevant should future climate projections for the XXI Century become a reality in the coming years. The hydrological modelling community is aware that there is a need to look at the large-scale fluxes of water but also to consider the use of water at smaller scales. However, much of the work done until this moment on this regard has focused on achieving hyper-resolution of models, while the ability of these new modelling approaches to provide relevant and reliable information to catchment water management has received relatively less attention. This project initiates a collaboration between the large-scale modelling and the catchment modelling communities, aiming to fill a gap whose existence is often recognised but sparsely studied. The overall research objective of this project is to explore and design an approach for integrating Catchment Water Management Models (CWMM) with Large-Scale Hydrological Models (LHM), and to assess its potential and limitations to enhance the quality of information LHMs provide at a regional scale. This project will deliver an integrated programme of knowledge exchange - on selected the CWMM and LHM, AQUATOOL and CWatM respectively, and their capabilities - and research - developing a proof-of-concept to couple both models in the heavily managed, data-rich Ebro River Basin (Spain), in collaboration with three leading institutions on global and regional hydrological modelling. The main project output will be a proof-of-concept of an advanced CWatM model for the Ebro River basin that efficiently couples water management and other human interactions with the hydrological system. The new version of CWatM will allow for a better evaluation of human impacts on water availability, overcoming the current limitations LHMs to faithfully represent regional hydrology. This will translate into substantial progress not only for the hydrological science community, but for the climate and earth system science communities. The outcomes of this project will be the onset of further collaborative research to produce a generalised version of the proof-of-concept which will be applicable to understand and address pressing regional water issues, such as transboundary conflicts, which are traditionally hampered by data securitisation. The generalised version can also serve as a benchmark for the benefits of modelling-based water resources assessment and management in developing countries with low water governance, which may encourage investments in capacity building and data collation to conduct their own analyses, which this partnership can support.
由于近50年来全球水资源短缺和与水有关的极端灾害的发生率不断增加,全球和区域尺度的水资源评估目前是科学家和决策者关注的一个主要问题。如果未来几年对21世纪的气候预测成为现实,这种担忧将变得更加重要。水文模拟界认识到,有必要研究大尺度的水通量,但也要考虑小尺度的水利用。然而,到目前为止,在这方面所做的大部分工作都集中在实现模型的超分辨率上,而这些新的建模方法为集水区水管理提供相关和可靠信息的能力受到的关注相对较少。该项目启动了大规模建模和集水区建模社区之间的合作,旨在填补一个经常被认识但很少被研究的空白。本项目的总体研究目标是探索和设计一种整合集水区水管理模型(CWMM)与大尺度水文模型(LHM)的方法,并评估其潜力和局限性,以提高大尺度水文模型在区域范围内提供的信息质量。该项目将提供一个综合的知识交流计划——分别针对选定的CWMM和LHM、AQUATOOL和CWatM,以及它们的能力和研究——与三个领先的全球和区域水文建模机构合作,在管理严格、数据丰富的埃布罗河流域(西班牙)开发一个概念验证,将这两个模型结合起来。主要项目成果将是Ebro河流域先进的CWatM模型的概念验证,该模型有效地将水管理和其他人类互动与水文系统结合起来。新版本的CWatM将允许更好地评估人类对水可用性的影响,克服当前lhm忠实地代表区域水文的局限性。这将转化为实质性的进展,不仅对水文科学界,而且对气候和地球系统科学界。该项目的成果将是进一步开展合作研究,以产生概念验证的一般版本,该版本将适用于理解和解决紧迫的区域水问题,例如跨境冲突,这些问题传统上受到数据证券化的阻碍。在水资源治理水平较低的发展中国家,通用版本还可以作为基于模型的水资源评估和管理的效益基准,这可能鼓励在能力建设和数据整理方面进行投资,以便进行自己的分析,而这种伙伴关系可以支持这些分析。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Do we need better models or more local knowledge? Assessing the added value of using locally sourced data over larger-scale datasets in regional to local hydrological modelling
我们需要更好的模型还是更多的本地知识?
- DOI:10.5194/egusphere-egu23-14991
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Haro Monteagudo D
- 通讯作者:Haro Monteagudo D
Enhancing global hydrological models with local knowledge to support Nexus analyses
利用当地知识增强全球水文模型以支持 Nexus 分析
- DOI:10.5194/egusphere-egu22-11027
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Haro Monteagudo D
- 通讯作者:Haro Monteagudo D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Haro Monteagudo其他文献
David Haro Monteagudo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 10.34万 - 项目类别:
Standard Grant
Enhancing global prediction of PFAS pollutant fate in sediment
加强对沉积物中 PFAS 污染物归宿的全球预测
- 批准号:
NE/Y003152/1 - 财政年份:2024
- 资助金额:
$ 10.34万 - 项目类别:
Research Grant
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
$ 10.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enhancing detection and mobile monitoring of schistosomiasis with urine-based analyte pre-concentration technology
利用基于尿液的分析物预浓缩技术加强血吸虫病的检测和移动监测
- 批准号:
10697011 - 财政年份:2023
- 资助金额:
$ 10.34万 - 项目类别:
Enhancing food sovereignty and nutrition in the context of intersecting social-ecological crises: Partnership building and planning in Guatemala and El Salvador
在交叉社会生态危机的背景下加强粮食主权和营养:危地马拉和萨尔瓦多的伙伴关系建设和规划
- 批准号:
460687 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别:
Miscellaneous Programs
Enhancing protective immunity against RSV by inhibitors of sphingolipid synthesis
通过鞘脂合成抑制剂增强对 RSV 的保护性免疫力
- 批准号:
10354486 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别:
MATRIX: enhancing access to global research in the mathematical sciences
MATRIX:增强数学科学研究的全球性
- 批准号:
LE220100107 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Acquisition of the Agilent Cytation C10 confocal imaging reader for enhancing biomedical research excellence at Clemson University
采购 Agilent Cytation C10 共焦成像阅读器,以提高克莱姆森大学的生物医学研究卓越性
- 批准号:
10798537 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别:
Enhancing protective immunity against RSV by inhibitors of sphingolipid synthesis
通过鞘脂合成抑制剂增强对 RSV 的保护性免疫力
- 批准号:
10619550 - 财政年份:2022
- 资助金额:
$ 10.34万 - 项目类别: