Predicting sudden and widespread biodiversity loss on a rapidly warming planet - when and where does biology change things?
预测在一个快速变暖的星球上突然和广泛的生物多样性丧失——生物学何时何地会改变事物?
基本信息
- 批准号:NE/W006618/1
- 负责人:
- 金额:$ 81.99万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Climate change is a major threat to human health and happiness, and to the species and ecosystems on which all economies depend, set to escalate rapidly over coming decades. Of greatest concern is that climate warming could simultaneously push many species beyond critical thermal thresholds, leading to the collapse of ecosystems and sudden and widespread biodiversity loss. The ability to predict where and when biodiversity is at risk of abrupt collapse is an urgent priority to drive emissions, conservation and food security policy, needed to avoid the most damaging impacts. Our own research suggests that even for widespread species, most local populations exist under a relatively narrow set of temperatures, so that gradual warming can suddenly push large areas of a species geographic range into hotter conditions than they can tolerate. One analogy is to imagine standing on a beach as the tide comes in. Where the beach is flat, large areas are suddenly inundated by the sea, but where the beach is steep, the sea encroaches slowly, even though the tide moves at a constant speed. We think the same applies to climate warming. Initially species may only be exposed at the very edge of their geographic range-like a steep bank on a shore. However, once the bank is breached, small increases quickly expose large numbers of individuals to damaging conditions, causing species to disappear abruptly from communities across their range. The big unknown is where and when fine scale variation in climate and in the ecology of organisms can reduce the risk of such abrupt collapses. One possibility is that species can disperse to nearby cooler sites (e.g. higher elevations or depths) or behave in ways that buffer extreme temperatures-either by seeking shade, suspending development, or breeding, flowering or fruiting in different months or years. Such organismal responses to environmental variation in space and time provide poorly understood resilience to climate warming, reducing the risk that populations, species and communities collapse at the same time. This project will study the extent to which variation in the response and evolutionary history of organisms will reduce the risk of abrupt collapse. Using data on the geographic distribution of 1000s of animal species, for which exceptional data are available, we will ask: why are thermal thresholds more abrupt for some species compared to others? For example, we suspect that birds and mammals-species that maintain a relatively constant body temperature are more thermally resilient than amphibians, reptiles and insects where performance depends on environmental temperatures. We will then test how the behavior of given species may buffer against warming, and for how long. Using data on changes in the distribution of European birds over recent decades we will ask if more dispersive species and those that can breed at different times, have more stable populations in places that our models predict are already crossing critical thresholds. Using data on the fine scale distribution and phenology of butterflies we will test if the ability to seek shelter from the heat explains why some species have persisted at low elevations where temperatures are rapidly rising, while others have become extinct.Finally, we will include these biotic responses in our models and ask whether they are enough to avoid abrupt species collapse, whether they simply delay inevitable biodiversity collapse, or potentially even make its effect worse: like the sea wall holding back the tide that eventually crumbles. Using our models we will better understand which species and ecosystems are most at risk of abrupt collapse, and when, under different emissions scenarios, enabling us to better target conservation efforts to safeguard these places, and predict which parts of the globe will remain productive for agriculture or wild harvesting, or will persist as carbon sinks, in the decades to come.
气候变化是对人类健康和幸福的重大威胁,也是对所有经济体所依赖的物种和生态系统的重大威胁,并将在未来几十年迅速升级。最令人关切的是,气候变暖可能同时将许多物种推到临界温度阈值之外,导致生态系统崩溃和生物多样性的突然和广泛丧失。预测生物多样性何时何地面临突然崩溃的风险是推动排放、保护和粮食安全政策的一个紧迫优先事项,这是避免最具破坏性影响所必需的。我们自己的研究表明,即使对于广泛分布的物种,大多数当地种群也存在于相对狭窄的温度范围内,因此逐渐变暖可能会突然将物种地理范围的大部分区域推入比它们所能忍受的更热的条件。一个类比是想象站在海滩上,潮水涌来。在海滩平坦的地方,大片的地方突然被海水淹没,但在海滩陡峭的地方,海水侵蚀缓慢,即使潮汐以恒定的速度移动。我们认为这同样适用于气候变暖。最初,物种可能只暴露在它们地理分布范围的边缘,就像海岸上陡峭的堤岸。然而,一旦银行被突破,小的增加很快就会使大量的个体暴露在破坏性的条件下,导致物种突然从其范围内的社区中消失。最大的未知数是,气候和生物生态学的细微变化在何时何地可以降低这种突然崩溃的风险。一种可能性是,物种可以分散到附近较冷的地方(例如更高的海拔或深度),或者以缓冲极端温度的方式行事-通过寻求阴凉,暂停发展,或在不同的月份或年份繁殖,开花或结果。这种生物体对空间和时间环境变化的反应提供了对气候变暖的知之甚少的弹性,降低了种群,物种和社区同时崩溃的风险。该项目将研究生物体的反应和进化历史的变化在多大程度上会减少突然崩溃的风险。使用关于1000种动物物种的地理分布的数据,我们会问:为什么某些物种的温度阈值比其他物种更突然?例如,我们怀疑保持相对恒定体温的鸟类和哺乳动物比两栖动物、爬行动物和昆虫更具热弹性,因为两栖动物、爬行动物和昆虫的表现取决于环境温度。然后,我们将测试特定物种的行为如何缓冲变暖,以及多久。利用近几十年来欧洲鸟类分布变化的数据,我们将询问更分散的物种和那些可以在不同时间繁殖的物种是否在我们的模型预测已经跨越临界阈值的地方拥有更稳定的种群。利用蝴蝶的精细分布和物候学数据,我们将测试寻找避难所的能力是否可以解释为什么一些物种在温度迅速上升的低海拔地区生存,而另一些物种已经灭绝。最后,我们将在我们的模型中包括这些生物反应,并询问它们是否足以避免物种突然崩溃,它们是否只是推迟了不可避免的生物多样性崩溃,或者甚至可能使其影响更糟:就像阻挡最终崩溃的潮汐的海堤一样。使用我们的模型,我们将更好地了解哪些物种和生态系统最有可能突然崩溃,以及在不同的排放情景下,何时,使我们能够更好地针对保护工作来保护这些地方,并预测地球仪的哪些部分将在未来几十年内保持农业或野生收获的生产力,或者将作为碳汇持续存在。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Abrupt expansion of climate change risks for species globally.
全球物种面临的气候变化风险急剧扩大。
- DOI:10.1038/s41559-023-02070-4
- 发表时间:2023
- 期刊:
- 影响因子:16.8
- 作者:Pigot AL
- 通讯作者:Pigot AL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Pigot其他文献
Alexander Pigot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Consequences of Perinatal Nicotine Exposure on Functional Brainstem Development
围产期尼古丁暴露对功能性脑干发育的影响
- 批准号:
10752337 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Systems Genetics of Vascular Smooth Muscle Phenotypes
血管平滑肌表型的系统遗传学
- 批准号:
10771623 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Human brain multi-omics to decipher major depression pathophysiology
人脑多组学破译重度抑郁症病理生理学
- 批准号:
10715962 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
A full spectrum rational approach to identify antiarrhythmic agents targeting IKs Channels
识别针对 IK 通道的抗心律失常药物的全谱理性方法
- 批准号:
10734513 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Peri-ictal respiratory and arousal disturbances in focal epilepsy: Role of the brainstem
局灶性癫痫发作期间的呼吸和觉醒障碍:脑干的作用
- 批准号:
10799997 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Bioelectric monitoring and neuromodulation of the heart
心脏的生物电监测和神经调节
- 批准号:
10655997 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Inflammatory stressors in serotonergic brainstem dysfunction and SIDS
血清素能脑干功能障碍和 SIDS 中的炎症应激源
- 批准号:
10659327 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别:
Antiarrhythmic mechanisms of chronic vagal nerve stimulation in sympathetic neurons
交感神经元慢性迷走神经刺激的抗心律失常机制
- 批准号:
10635151 - 财政年份:2023
- 资助金额:
$ 81.99万 - 项目类别: