NSFGEO-NERC: HUrricane Risk Amplification and Changing North Atlantic Natural disasters (Huracan)
NSFGEO-NERC:飓风风险放大和改变北大西洋自然灾害(飓风)
基本信息
- 批准号:NE/W009595/1
- 负责人:
- 金额:$ 32.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Tropical cyclones (TCs) are one of the most dangerous natural hazards on Earth. Known as hurricanes in the North Atlantic, TCs represent ~30% ($75bn) of global annual losses due to all natural hazards, to which all our societies are - at least economically - exposed. Understanding future changes in TC frequency and strength are active, challenging and critical research areas. The term 'tropical' suggests that the lifetime and impacts of TCs are confined to the tropics, but this is not the case. Some tropical cyclones (TCs) migrating into the mid-latitudes retain the physical characteristics of a hurricane, while others structurally evolve into post-tropical cyclones (PTCs). Both types (which we collectively call CTOs) can be extremely intense and their hazards set them apart from typical extratropical cyclones, the type of storm our societies are adapted to in mid-latitudes.Recent events, and ongoing research, have brought into sharp focus the dangers posed by CTOs to the North-East United States (NEUS), as well as the British Isles and Western Europe (BIWE). North of 30N, events in the last ten years have been the most costly on record, causing loss of life and widespread severe damage: Ophelia totalled $70m in Ireland; Sandy alone totalled US$17bn in New York City; Henri and Ida in autumn 2021 caused $31-44bn in losses around New York State. More generally, and despite uncertainty due to decadal variability, there are indications that the number of CTOs reaching the midlatitudes has increased, consistent with projections of CTOs making landfall in BIWE, in the future. Future projections, despite uncertainties, highlight the increasing likelihood of a CTO landfall over BIWE/NEUS. Even if such events should be rare, the potential consequences are alarming; for instance, our homes and infrastructure are not designed to resist hurricane-intensity winds, nor the associated flooding. Although our weather-forecasting centres surveil tropical weather, our early-warning systems remain largely untested against CTOs. Risk assessment is held back by a fundamental lack of information: while some UK and US records exist as far back as 1860, the US National Hurricane Center only began recording non-US landfalls in 1991 and a complete analysis of TCs east of 30W only in 2005. Very little research exists for the eastern side of the Atlantic. According to analysis of 7 reanalysis datasets since 1979, 3-5 CTOs reach NEUS and 1-2 CTOs reach BIWE each year.How can we address these shortcomings? Continued surveillance (e.g. with new satellite products) is key. Complementing observations are model data, for instance the climate 'reanalyses', typically spanning the last 50-100 years. Additionally, we need far more physically plausible evidence, and physical reasoning, for robust risk assessment.Huracán will:1. make use of the latest developments in numerical simulation, with 1-3km grid-spacing (similar to the concept of pixel size in a digital camera) enabling us to fundamentally change how we simulate the processes leading to the birth (genesis) of CTOs.2. tap into a wealth of potential case studies contained in ensembles of seasonal prediction model simulations, which offer multiple versions of 'could-have-been' CTOs and augment the sample size by a factor of order 100.3. combine all the data products in 1) and 2) to construct plausible physical routes (storylines) for a CTO landfall and to identify what the worst-case scenarios could be in terms of wind, storm surge, precipitation (both leading to extreme flooding) and enable future planning.Huracán will leverage state-of-the-art capabilities (theory, simulation, process analysis) across leading institutions on both sides of the Atlantic, and harness international collaborations to address two pivotal issues: (i) the key factors that influence the formation and evolution of CTOs reaching the midlatitudes; (ii) what governs mid-latitude landfall of the most hazardous CTOs.
热带气旋是地球上最危险的自然灾害之一。TCS在北大西洋被称为飓风,占全球所有自然灾害造成的年损失的约30%(750亿美元),我们所有的社会都面临着--至少在经济上--的风险。了解TC频率和强度的未来变化是活跃、具有挑战性和关键的研究领域。“热带”一词表明,TCS的寿命和影响仅限于热带地区,但事实并非如此。一些迁移到中纬度的热带气旋(TC)保留了飓风的物理特征,而另一些热带气旋在结构上演变为后热带气旋(PTCs)。这两种类型(我们统称为CTO)都可能非常强烈,它们的危害使它们有别于典型的温带气旋,典型的温带气旋是我们的社会适应中纬度地区的风暴类型。最近的事件和正在进行的研究使CTO对美国东北部(Neus)以及不列颠群岛和西欧(BIWE)构成的危险成为尖锐的焦点。在30N以北,过去十年的事件是有记录以来代价最高的,造成了生命损失和广泛的严重破坏:奥菲莉亚在爱尔兰总计7000万美元;仅桑迪在纽约市就总计170亿美元;2021年秋季的亨利和艾达在纽约州各地造成了310亿至440亿美元的损失。更广泛地说,尽管由于年代际变化而存在不确定性,但有迹象表明,到达中纬度的CTO数量有所增加,这与CTO未来登陆BIWE的预测是一致的。尽管存在不确定性,但未来的预测强调了CTO登陆BIWE/Neus的可能性越来越大。即使这样的事件应该是罕见的,潜在的后果也是令人担忧的;例如,我们的家园和基础设施的设计并不能抵御飓风强度的大风,也不能抵御相关的洪水。尽管我们的天气预报中心监测热带天气,但我们的早期预警系统在很大程度上仍然没有针对CTO进行测试。由于根本缺乏信息,风险评估受到阻碍:尽管英国和美国的一些记录早在1860年就存在,但美国国家飓风中心直到1991年才开始记录非美国登陆,直到2005年才开始对西经30W以东的TCS进行全面分析。对大西洋东岸的研究非常少。根据1979年以来的7个再分析数据集的分析,每年有3-5个CTO到达Neus,1-2个CTO到达BIWE。我们如何解决这些缺陷?持续监测(例如,使用新的卫星产品)是关键。与观测结果相辅相成的是模型数据,例如通常跨越过去50-100年的气候“重新分析”。此外,我们需要更多物理上可信的证据和物理推理,以进行稳健的风险评估。Huracán将:1.利用数值模拟的最新发展,使用1-3公里的网格间距(类似于数码相机中像素大小的概念),使我们能够从根本上改变我们模拟导致CTOs2诞生(起源)的过程的方式。利用季节性预测模型模拟集合中包含的大量潜在案例研究,这些模型提供了多个版本的“可能的”CTO,并将样本量增加了100.3倍。结合1)和2)中的所有数据产品,为CTO登陆构建可信的物理路线(故事情节),确定最坏的情况可能是什么,如风、风暴潮、降水(两者都会导致极端洪水)并进行未来规划。Huracán将利用大西洋两岸领先机构的最先进能力(理论、模拟、过程分析),并利用国际合作来解决两个关键问题:(I)影响到达中纬度的CTO形成和演变的关键因素;(Ii)最危险的CTO在中纬度登陆的主导因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeff Polton其他文献
Jeff Polton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeff Polton', 18)}}的其他基金
Processes drIving Submarine Canyon fluxES
驱动海底峡谷通量的过程ES
- 批准号:
NE/W00528X/1 - 财政年份:2022
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
Rapid Tidal Flow Forecasting for Marine Energy Resource Assessment
海洋能源资源评估的快速潮流预报
- 批准号:
NE/S005811/1 - 财政年份:2018
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
Pycnocline Mixing in Shelf Seas
陆架海中的碧诺斜混合
- 批准号:
NE/L003325/1 - 财政年份:2014
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
Large Eddy Simulation of Shelf Sea Thermocline Mixing Processes
陆架海温跃层混合过程的大涡模拟
- 批准号:
NE/I002103/1 - 财政年份:2010
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
相似海外基金
NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
NE/X000656/1 - 财政年份:2025
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
- 批准号:
NE/Z000246/1 - 财政年份:2025
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
NE/Z000254/1 - 财政年份:2025
- 资助金额:
$ 32.41万 - 项目类别:
Research Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317938 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Standard Grant
NERC-NSFGEO: Imaging the magma storage region and hydrothermal system of an active arc volcano
NERC-NSFGEO:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
2404029 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
2334541 - 财政年份:2024
- 资助金额:
$ 32.41万 - 项目类别:
Continuing Grant