The Big Thaw: gauging the past, present and future of our mountain water resources
大解冻:衡量山区水资源的过去、现在和未来
基本信息
- 批准号:NE/X003787/1
- 负责人:
- 金额:$ 3.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The world's mountains store and release frozen water when it is most valuable, as summer meltwater in the growing season. This service is an extraordinary generator of wealth and well-being, sustaining a sixth of the global population and a quarter of global GDP, but is highly vulnerable to climate change. Over the next 30 years, the Alps, Western North America, Himalayas and Andes will lose 10-40% of their snow, hundreds of cubic kilometres of summer water supply, and by end of century, mountain glaciers will lose 20-60% of their ice.To map our mountain water resources and predict their future, we must rely on models of snowfall, seasonal snowpacks, glacier gains and losses, and river runoff. The skill of these models is, however, fundamentally limited by the quality and availability of observations needed to test and develop them, and the mountain cryosphere is so large, varied and inhospitable that we lack many of these key observations. In most mountain ranges, snowfall is underestimated by 50-100%, and weather records are too short to have captured a history of their climate extremes. The thickness of only 6 of 41,000 glaciers has been surveyed in the Himalayan headwaters of the Brahmaputra, Indus and Ganges basins, so the lifespan of a water resource used by 800 million people remains unpredictable.This project aims to fill four of the key observation gaps: 1) snowfall, 2) glacier thickness, 3) runoff, and 4) weather extremes, by taking a targeted approach to provide not blanket coverage of the mountain cryosphere but carefully-selected datasets designed to test and improve model skill. Importantly, through the calibration and refinement of relevant model processes at these target sites we can eliminate gross biases and reduce uncertainties in model outputs that can then apply not just locally but across all model scales, in the past, present and future.We will make new snowfall observations with a pioneering method that, for the first time, makes unbiased measurements over areas thousands to billions of times larger than rain gauges, and use these to test and improve snowfall models that are run worldwide. To capture and understand the extremes of mountain precipitation, we will extend the decades-long instrumental record back by centuries to millennia by identifying the signals of wet and dry years preserved in high, undisturbed Himalayan-lake sediments that we will core and analyse at very high resolution. In parallel, we will use a recently acquired and uniquely extensive glacier survey from Nepal to improve glacier-thickness models on the mountain-range scale. We will use our new snowfall maps and projections to drive detailed models of snowpack and glacier evolution over the 21st century for two targeted catchments in the Alps and Himalayas. We will apply our models to our glacier thickness maps to determine how long these glaciers will survive under a changing climate, how much meltwater will flow into their catchments and how this will change. We will test the performance of our models against cutting-edge new flux and hydrochemistry observations of the contribution of different water sources to downstream river flow. Finally, we will determine which climate factors affect the frequency and severity of extreme wet and dry years for the two catchments, and how these events are likely to change through the 21st century.Together, our targeted, data-driven modelling advances will demonstrably improve our ability to quantify how much seasonal snow accumulates in the mountain cryosphere and predict how it will change in the future, what the timescales and potential trajectories for change are for glacier-ice resources, how frequently dry and wet years occur, what climate factors cause this, and how these extremes will change. By making the mountain cryosphere more predictable, we will support societies in managing change in this critical but vulnerable water resource.
世界上的山脉在最有价值的时候储存和释放冰冻的水,就像夏季融化的水在生长季节。这项服务是财富和福祉的非凡创造者,养活了全球六分之一的人口和四分之一的全球GDP,但极易受到气候变化的影响。在接下来的30年里,阿尔卑斯山、北美西部、喜马拉雅山脉和安第斯山脉将失去10%-40%的积雪,数百立方公里的夏季供水,到本世纪末,山脉冰川将失去20%-60%的冰。为了绘制我们的山脉水资源图并预测它们的未来,我们必须依靠降雪、季节性积雪、冰川得失和河流径流的模型。然而,这些模型的技术从根本上受到测试和开发它们所需观测的质量和可用性的限制,而且山脉冰冻圈如此之大、多种多样且不适宜居住,以至于我们缺乏许多这些关键观测。在大多数山脉,降雪量被低估了50%-100%,天气记录太短,无法捕捉到它们的极端气候历史。在喜马拉雅源头的雅鲁藏布江、印度河和恒河盆地的41,000个冰川中只有6个的厚度被调查过,所以8亿人使用的水资源的寿命仍然是不可预测的。该项目旨在填补四个关键的观测空白:1)降雪,2)冰川厚度,3)径流和4)极端天气,采取有针对性的方法,提供不是全面覆盖山脉冰冻圈,而是精心挑选的数据集,旨在测试和改进模型技能。重要的是,通过在这些目标地点对相关模型过程的校准和改进,我们可以消除模型输出中的总偏差,减少模型输出中的不确定性,然后不仅可以应用于本地,而且可以应用于过去、现在和未来的所有模型尺度。我们将用一种开创性的方法进行新的降雪观测,首次在比雨量计大数千到数十亿倍的地区进行无偏测量,并使用这些方法来测试和改进全球运行的降雪模型。为了捕捉和了解山地降水的极端情况,我们将通过识别保存在高的、未受干扰的喜马拉雅湖沉积物中保存的干湿年份的信号,将长达数十年的仪器记录追溯到几个世纪到几千年,我们将以非常高的分辨率进行取心和分析。同时,我们将利用最近从尼泊尔获得的独一无二的广泛冰川调查来改进山脉尺度上的冰川厚度模型。我们将使用我们的新降雪地图和预测,为阿尔卑斯山和喜马拉雅山的两个目标集水区提供21世纪积雪和冰川演变的详细模型。我们将把我们的模型应用于我们的冰川厚度地图,以确定这些冰川在不断变化的气候下能存活多久,有多少融水将流入它们的集水区,以及这种情况将如何变化。我们将针对前沿的新通量和不同水源对下游河流流量的贡献的水化学观测来测试我们的模型的性能。最后,我们将确定哪些气候因素影响这两个集水区的极端潮湿和干旱年份的频率和严重程度,以及这些事件在整个21世纪可能发生的变化。我们有针对性的、以数据为驱动的模拟进展将明显提高我们量化山脉冰冻圈季节性积雪的数量和预测未来它将如何变化的能力,冰川-冰资源的时间尺度和潜在变化轨迹,干旱和潮湿年份发生的频率,什么气候因素导致这种情况,以及这些极端情况将如何变化。通过使山区冰冻圈变得更可预测,我们将支持社会管理这一关键但脆弱的水资源的变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Field其他文献
Multifaceted aerosol effects on precipitation
气溶胶对降水的多方面影响
- DOI:
10.1038/s41561-024-01482-6 - 发表时间:
2024-08-09 - 期刊:
- 影响因子:16.100
- 作者:
Philip Stier;Susan C. van den Heever;Matthew W. Christensen;Edward Gryspeerdt;Guy Dagan;Stephen M. Saleeby;Massimo Bollasina;Leo Donner;Kerry Emanuel;Annica M. L. Ekman;Graham Feingold;Paul Field;Piers Forster;Jim Haywood;Ralph Kahn;Ilan Koren;Christian Kummerow;Tristan L’Ecuyer;Ulrike Lohmann;Yi Ming;Gunnar Myhre;Johannes Quaas;Daniel Rosenfeld;Bjorn Samset;Axel Seifert;Graeme Stephens;Wei-Kuo Tao - 通讯作者:
Wei-Kuo Tao
Meteorology Modulates the Impact of GCM Horizontal Resolution on Underestimation of Midlatitude Ocean Wind Speeds
气象学调节 GCM 水平分辨率对中纬度海洋风速低估的影响
- DOI:
10.1029/2024gl108512 - 发表时间:
2024 - 期刊:
- 影响因子:5.2
- 作者:
Geethma Werapitiya;Daniel McCoy;Gregory Elsaesser;Paul Field;Stefan Rahimi - 通讯作者:
Stefan Rahimi
Paul Field的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于“freeze-thaw”诱导的新型无试剂化纳米粒子负载适体探针高效快速检测中药中真菌毒素污染研究
- 批准号:81903798
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Hydrogeologic implications of permafrost thaw - Developing a process-based understanding of biophysical controls and educational tools for rural communities
职业:永久冻土融化的水文地质影响 - 为农村社区建立对生物物理控制和教育工具的基于过程的理解
- 批准号:
2235308 - 财政年份:2024
- 资助金额:
$ 3.88万 - 项目类别:
Continuing Grant
Modeling ground-surface displacement due to freeze-thaw cycles in permafrost regions
模拟永久冻土地区冻融循环引起的地表位移
- 批准号:
23K13179 - 财政年份:2023
- 资助金额:
$ 3.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: The impact of permafrost thaw on the fate and magnitude of carbon aquatic transport from Arctic tundra soil
博士论文研究:永久冻土融化对北极苔原土壤碳水运输的命运和程度的影响
- 批准号:
2310630 - 财政年份:2023
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Toward A Process Understanding of the Methane Thermodynamics Associated with Permafrost Thaw at the Arctic Continental Shelves
理解与北极大陆架永久冻土融化相关的甲烷热力学过程
- 批准号:
2317541 - 财政年份:2023
- 资助金额:
$ 3.88万 - 项目类别:
Standard Grant
Mat lichens are critical components of northern ecosystems: slow permafrost thaw and enhance reproduction of culturally significant caribou in Labrador, Canada.
垫状地衣是北方生态系统的重要组成部分:减缓永久冻土的融化并增强加拿大拉布拉多具有重要文化意义的驯鹿的繁殖。
- 批准号:
558702-2021 - 财政年份:2022
- 资助金额:
$ 3.88万 - 项目类别:
Postgraduate Scholarships - Doctoral
The role of altered resource availability in determining taiga forest response to permafrost thaw
改变资源可用性在确定针叶林对永久冻土融化的反应中的作用
- 批准号:
RGPIN-2019-05889 - 财政年份:2022
- 资助金额:
$ 3.88万 - 项目类别:
Discovery Grants Program - Individual
Microbial community responses to permafrost thaw and associated sediment transport into streams
微生物群落对永久冻土融化和相关沉积物流入河流的反应
- 批准号:
575537-2022 - 财政年份:2022
- 资助金额:
$ 3.88万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Understanding the impacts of permafrost thaw on surface water flux and storage
了解永久冻土融化对地表水通量和储存的影响
- 批准号:
RGPNS-2020-07229 - 财政年份:2022
- 资助金额:
$ 3.88万 - 项目类别:
Discovery Grants Program - Northern Research Supplement
The role of altered resource availability in determining taiga forest response to permafrost thaw
改变资源可用性在确定针叶林对永久冻土融化的反应中的作用
- 批准号:
444194-2019 - 财政年份:2022
- 资助金额:
$ 3.88万 - 项目类别:
Discovery Grants Program - Northern Research Supplement
The Big Thaw: gauging the past, present and future of our mountain water resources
大解冻:衡量山区水资源的过去、现在和未来
- 批准号:
NE/X005267/1 - 财政年份:2022
- 资助金额:
$ 3.88万 - 项目类别:
Research Grant