Using synthetic biology to manipulate bacterial social behaviours to maximise the microbial degradation of environmental waste plastics.
利用合成生物学操纵细菌的社会行为,最大限度地实现环境废塑料的微生物降解。
基本信息
- 批准号:NE/X010902/1
- 负责人:
- 金额:$ 10.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plastic pollution is a growing worldwide problem, with 12,000 million metric tonnes of plastic waste predicted to be in landfill or the environment by 2050. Whilst recycling can give a second life to some plastic, not all plastic types are easily recycled and cost can be a limiting factor, resulting in only 9% of plastic waste having ever been recycled. If plastic is not recycled, it is either sent to landfill where it pollutes the soil and run off pollutes the global water systems, or it is incinerated, releasing toxic fumes and adding to carbon emissions. Plastic pollution is damaging the environments of animals all the way down to microbes, ultimately leading to ecosystem collapse. An environmentally friendly alternative is biodegradation of plastic by microorganisms into non-toxic breakdown products, some of which can be valorised with downstream industrial uses, such as polyethylene glycol, which has many uses including acting as an anti-foaming agent in food and drinks. Multiple species of bacteria have been found to degrade waste plastic, however many of these act at a slow rate resulting in only a small reduction in plastic weight over a period of months. An example of this is an environmental consortia of plastic degrading microorganisms which was able to decrease polystyrene weight by ~5% in 6 months. Recent research has focused on identifying the enzymes produced by these bacteria and fungi that are capable of breaking down waste plastic and exploring if these enzymes can be modified to increase their ability to degrade waste plastic. While these approaches have yielded some improvements, these enzymes are still a long way off being a viable solution to tackling the plastic waste problem. The majority of research in the field is currently focused on optimising the plastic eating enzymes themselves to improve their activity. In this proposal we aim to take a novel approach, exploring the frontiers of activity optimisation by modifying how bacteria behave, to increase their ability to degrade plastic. Bacteria like to attach to surfaces in communities called biofilms because, just like people who live villages, towns or cities, bacteria in biofilms are better protected from the environment and can share resources and nutrients with each other. To build a biofilm, bacteria produce a slime called an exopolysaccharide which surrounds the community. A good example of a bacterial biofilm that everyone has encountered at some point is dental plaque. This is a community of bacteria who like to grow in the mouth, so attach to our teeth and form a biofilm to help them stay in this environment. In this proposal we plan to harness this behaviour of bacteria using genetic engineering to trick plastic degrading bacteria into forming large biofilms on the surface of waste plastic. Forming a biofilm on waste plastic has two major advantages. The first advantage is that it increases the concentration of plastic degrading enzyme around the waste plastic and the more enzyme means the more degradation. The other major advantage is that the exopolysaccharide slime being produced by the bacteria will stop the enzymes from being washed away. We have performed some preliminary tests in the lab to show that using genetic engineering we can increase the levels of bacteria biofilm formation on waste plastic. We have also tested our approach using well-known plastic eating enzymes and shown that increasing the levels of biofilm formation leads to a major increase in the levels of plastic degradation. In a high risk, high reward strategy we now want to test our approach against the most common and difficult to degrade waste plastics such as Polyethylene terephthalate (PET). We also want to test this approach in a bioreactor where bacteria are fed waste plastic. We believe in the future; every house could have their own microbial plastic degrading bioreactor and this research could be the first steps in making this a reality.
塑料污染是一个日益严重的全球性问题,预计到2050年将有120亿公吨塑料废物进入垃圾填埋场或环境。虽然回收可以给一些塑料第二次生命,但并不是所有的塑料类型都容易回收,成本可能是一个限制因素,导致只有9%的塑料废物被回收。如果塑料不被回收,它要么被送到垃圾填埋场,污染土壤并污染全球水系统,要么被焚烧,释放有毒烟雾并增加碳排放。塑料污染正在破坏动物的环境,一直到微生物,最终导致生态系统崩溃。一种环保的替代方法是通过微生物将塑料生物降解为无毒的分解产物,其中一些可以在下游工业用途中增值,例如聚乙二醇,其具有许多用途,包括在食品和饮料中用作消泡剂。已经发现多种细菌可以降解废塑料,但其中许多细菌的作用速度很慢,在几个月的时间里只会导致塑料重量的小幅减少。这方面的一个例子是塑料降解微生物的环境联合体,其能够在6个月内将聚苯乙烯重量减少约5%。最近的研究集中在确定这些细菌和真菌产生的能够分解废塑料的酶,并探索是否可以对这些酶进行修饰以提高其降解废塑料的能力。虽然这些方法已经取得了一些改进,但这些酶仍然是解决塑料废物问题的可行解决方案。目前,该领域的大多数研究都集中在优化塑料食用酶本身以提高其活性。在这项提案中,我们的目标是采取一种新的方法,通过改变细菌的行为来探索活性优化的前沿,以提高它们降解塑料的能力。细菌喜欢附着在称为生物膜的社区的表面,因为就像生活在村庄,城镇或城市的人一样,生物膜中的细菌更好地保护环境,并且可以彼此分享资源和营养。为了形成生物膜,细菌会产生一种被称为胞外多糖的粘液,这种粘液包围着细菌群落。每个人都曾遇到过的细菌生物膜的一个很好的例子是牙菌斑。这是一个喜欢在口腔中生长的细菌群落,因此附着在我们的牙齿上并形成生物膜,以帮助它们留在这个环境中。在这项提案中,我们计划利用基因工程来利用细菌的这种行为,诱使塑料降解细菌在废塑料表面形成大型生物膜。在废塑料上形成生物膜有两大优势。第一个优点是它增加了废塑料周围塑料降解酶的浓度,酶越多,降解越多。另一个主要的优点是,细菌产生的胞外多糖粘液将阻止酶被冲走。我们已经在实验室进行了一些初步测试,表明使用基因工程,我们可以增加废塑料上细菌生物膜的形成水平。我们还使用众所周知的塑料食用酶测试了我们的方法,并表明增加生物膜形成的水平会导致塑料降解水平的大幅增加。在一个高风险,高回报的策略中,我们现在想测试我们的方法对最常见和最难降解的废塑料,如聚对苯二甲酸乙二醇酯(PET)。我们还想在一个生物反应器中测试这种方法,在这个生物反应器中,细菌被喂食废塑料。我们相信未来;每个家庭都可以拥有自己的微生物塑料降解生物反应器,这项研究可能是使其成为现实的第一步。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enrichment of native plastic-associated biofilm communities to enhance polyester degrading activity
- DOI:10.1111/1462-2920.16466
- 发表时间:2023-07-28
- 期刊:
- 影响因子:5.1
- 作者:Howard, Sophie A. A.;Carr, Clodagh M. M.;McCarthy, Ronan R. R.
- 通讯作者:McCarthy, Ronan R. R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronan McCarthy其他文献
Ronan McCarthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronan McCarthy', 18)}}的其他基金
Uncovering the antimicrobial and antibiotic potentiating mechanism of acesulfame-K and maximising its topical therapeutic potential.
揭示安赛蜜的抗菌和抗生素增强机制并最大限度地发挥其局部治疗潜力。
- 批准号:
MR/Y001354/1 - 财政年份:2024
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
Understanding the molecular survival strategies of Acinetobacter baumannii and developing strategies to disable them.
了解鲍曼不动杆菌的分子生存策略并制定使其失效的策略。
- 批准号:
BB/V007823/1 - 财政年份:2021
- 资助金额:
$ 10.27万 - 项目类别:
Research Grant
相似国自然基金
近空间飞行器载MIMO SAR高分辨率、宽测绘带遥感成像机理与方法
- 批准号:41101317
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于大机动运动平台的特定目标多极化成像与匹配技术研究
- 批准号:11176022
- 批准年份:2011
- 资助金额:46.0 万元
- 项目类别:联合基金项目
相似海外基金
The establishment of basic technology for next-generation phage therapy using metagenomics and synthetic biology
利用宏基因组学和合成生物学建立下一代噬菌体治疗的基础技术
- 批准号:
22KJ1099 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Bottom-up, high-throughput prototyping of extracellular vesicle mimetics using cell-free synthetic biology
使用无细胞合成生物学对细胞外囊泡模拟物进行自下而上的高通量原型设计
- 批准号:
10638114 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
LEAP-HI: Design, Fabrication, and Multiscale Understanding of Biolubricants Using Synthetic Biology, Glycoengineering, and Biomimetic Synthesis
LEAP-HI:利用合成生物学、糖工程和仿生合成对生物润滑剂进行设计、制造和多尺度理解
- 批准号:
2245367 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Continuing Grant
Dissection of in situ myeloid signaling using image-guided synthetic control
使用图像引导合成控制剖析原位骨髓信号传导
- 批准号:
10794433 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Dissecting the logic of mammalian gene regulation using synthetic biology and single-cell sequencing
使用合成生物学和单细胞测序剖析哺乳动物基因调控的逻辑
- 批准号:
10696717 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
BIOSCIENCE FOR RENEWABLE RESOURCES AND CLEAN GROWTH - Expanding Synthetic Biology using Biocompatible Reactions
可再生资源和清洁增长的生物科学 - 利用生物相容性反应扩展合成生物学
- 批准号:
2890724 - 财政年份:2023
- 资助金额:
$ 10.27万 - 项目类别:
Studentship
LabGenius: Using synthetic biology, machine learning and robotics to discover a safer, more effective Nectin-4 T-cell engager for advanced cancers.
LabGenius:利用合成生物学、机器学习和机器人技术来发现一种更安全、更有效的 Nectin-4 T 细胞接合剂,用于治疗晚期癌症。
- 批准号:
10036093 - 财政年份:2022
- 资助金额:
$ 10.27万 - 项目类别:
Collaborative R&D
Precise targeting of T1D specific T cells using CAR and peptide-MHC chimeric antigen ligands
使用 CAR 和肽-MHC 嵌合抗原配体精确靶向 T1D 特异性 T 细胞
- 批准号:
10436483 - 财政年份:2022
- 资助金额:
$ 10.27万 - 项目类别:
BII-Design: Using Synthetic Biology to Discover Cross-Kingdom Metabolic Rules of Life
BII-Design:利用合成生物学发现跨领域的生命代谢规则
- 批准号:
2320270 - 财政年份:2022
- 资助金额:
$ 10.27万 - 项目类别:
Standard Grant
A synthetic biology platform for sustainable, climate-friendly conversion of CO2 to products using cyanobacteria
一个合成生物学平台,利用蓝藻将二氧化碳可持续、气候友好地转化为产品
- 批准号:
2746407 - 财政年份:2022
- 资助金额:
$ 10.27万 - 项目类别:
Studentship