PAthways of Chemcials Into Freshwaters and their ecological ImpaCts (PACIFIC)
化学品进入淡水的途径及其生态影响(太平洋)
基本信息
- 批准号:NE/X015874/1
- 负责人:
- 金额:$ 51.81万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Manufactured chemicals are essential for the maintenance of public health, food production and quality of life, including a diverse range of pharmaceuticals, pesticides, and personal care products. The use of these compounds throughout society has led to increasing concentrations and chemodiversity in the environment. Whilst there has been focus on understanding the impacts of chemicals on a subset of freshwater biodiversity (particularly invertebrates and fish), we understand less about how chemical pollution impacts freshwater microbes. These microbial communities (the 'microbiome') number in the millions to billions of cells per millilitre of water or gram of sediment and form the most biodiverse and functionally important component of freshwater ecosystems. The biogeochemical and ecological functions delivered by freshwater microbes are essential to wider freshwater ecosystem health. The PAthways of Chemicals Into Freshwaters and their ecological ImpaCts (PACIFIC) project will focus on understanding the link between sources of anthropogenic chemicals and their pathways, fate and ecological impacts in freshwater ecosystems, with an emphasis on freshwater microbial ecosystems and the functions they perform. We will investigate the relationship between predicted diffuse and point source chemical pathways and measured chemical concentrations in water and sediments at locations across the Thames and Bristol Avon catchments, chosen to represent gradients of diffuse pollution sources. These locations will be chosen to coincide with Wastewater Treatment Works (WwTWs) to understand how sewage effluent contributes to chemical burden across these gradients. Liquid chromatography coupled with (high resolution) tandem mass spectrometry and QTOF (quadrupole Time-of-Flight) mass spectrometry will be used to perform targeted and untargeted profiling of chemical groups proven and suspected to impact freshwater ecology. A range of microbial community ecosystem endpoints will also be measured at each location to identify the impact of chemical exposure, including bacterial and fungal community composition via DNA sequencing, the expression of nutrient cycling and chemical stress and resistance genes, the production of extracellular enzymes involved with biogeochemical cycling, and the functional gene repertoire of whole microbial communities.We will perform experimental microcosm exposures on freshwater microbial communities, with increasing complexity and realism, deploying high-throughput screening to identify novel chemical groups (and their structural features) with the capacity to restructure these communities. Exemplar microbial community modifying chemicals will be investigated in more detail by applying cutting-edge molecular techniques to determine ecological exposure thresholds that represent different taxonomic and functional aspects of freshwater microbial ecosystems. Novel field based mesocosms will be used to explore wastewater exposures in more realistic, but controlled settings, allowing us to explore how chemical pollution may interact with other ecological drivers such as nutrients and temperature, and how microbial responses scale-up to higher trophic levels and alter ecosystem functioning.Spatially and temporally up-scaled models of diffuse and point source chemical pollution pathways will be combined with novel thresholds developed from the lab and field exposures, to determine chemical threats to freshwater microbes, supporting the development of tools for the better management of the risks of chemical pollution to freshwater ecosystem health. These will be combined with future hydrological, climate and socio-economic scenarios, informed by responses in our experiments, and co-developed with project collaborators, the Environment Agency, to explore future threats to microbial freshwater ecosystems and wider ecosystem health.
制成品对维护公共卫生、食品生产和生活质量至关重要,包括各种药品、农药和个人护理产品。这些化合物在整个社会中的使用导致了环境中浓度和化学多样性的增加。虽然人们一直专注于了解化学品对淡水生物多样性(特别是无脊椎动物和鱼类)的影响,但我们对化学污染如何影响淡水微生物的了解较少。这些微生物群落(“微生物组”)的数量在每毫升水或每克沉积物中有数百万至数十亿个细胞,构成了淡水生态系统中最具生物多样性和功能重要的组成部分。淡水微生物的生物地球化学和生态功能对更广泛的淡水生态系统健康至关重要。化学品进入淡水的途径及其生态影响(太平洋)项目将侧重于了解淡水生态系统中人为化学品来源及其途径、归宿和生态影响之间的联系,重点是淡水微生物生态系统及其功能。我们将调查预测的扩散和点源化学途径和测量的化学浓度在整个泰晤士河和布里斯托埃文流域,选择代表扩散污染源的梯度的位置在水和沉积物之间的关系。这些地点的选择将与污水处理厂(WwTW)相吻合,以了解污水如何在这些梯度上造成化学负担。液相色谱法与(高分辨率)串联质谱法和QTOF(四极杆飞行时间)质谱法相结合,将用于对已证实和怀疑影响淡水生态的化学基团进行有针对性和非有针对性的分析。还将在每个地点测量一系列微生物群落生态系统终点,以确定化学品暴露的影响,包括通过DNA测序确定细菌和真菌群落组成、营养循环和化学胁迫和抗性基因的表达、参与生物地球化学循环的胞外酶的产生、以及整个微生物群落的功能基因库。我们将对淡水微生物群落进行实验性的微观暴露,随着复杂性和现实性的增加,部署高通量筛选,以确定新的化学基团(及其结构特征),具有重组这些社区的能力。将通过应用尖端分子技术来更详细地研究示例性微生物群落修饰化学品,以确定代表淡水微生物生态系统不同分类和功能方面的生态暴露阈值。新的基于野外的中型生态系统将用于探索更现实但受控的环境中的废水暴露,使我们能够探索化学污染如何与其他生态驱动因素(如营养素和温度)相互作用,以及微生物的反应如何扩大到更高的营养水平,并改变生态系统的功能。扩散和点源化学污染途径的比例模型将与从实验室和现场暴露中开发的新阈值相结合,以确定对淡水微生物的化学威胁,支持开发工具,更好地管理化学品污染对淡水生态系统健康的风险。这些将与未来的水文,气候和社会经济情景相结合,通过我们实验中的反应提供信息,并与项目合作者环境局共同开发,以探索未来对微生物淡水生态系统和更广泛的生态系统健康的威胁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle Jackson其他文献
PD56-06 ARE GLEASON SCORE AND METASTATIC DISEASE STATUS IMPORTANT FOR MEN WITH PROSTATE CANCER UNDERGOING MULTIGENE PANEL TESTING?
- DOI:
10.1016/j.juro.2018.02.2638 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Michelle Jackson;Lauren Bowling;Jessica Profato-Partlow;David Crawford - 通讯作者:
David Crawford
Applying Behavior Analysis Within the Wraparound Process
在环绕过程中应用行为分析
- DOI:
10.1177/106342660000800402 - 发表时间:
2000 - 期刊:
- 影响因子:1.9
- 作者:
Michael J. Myaard;C. Crawford;Michelle Jackson;G. Alessi - 通讯作者:
G. Alessi
Temporal and Spatial Variability Scales of Salinity at a Large Microtidal Estuary
大型微潮河口盐度的时空变化尺度
- DOI:
10.3390/jmse9080860 - 发表时间:
2021 - 期刊:
- 影响因子:2.9
- 作者:
Michelle Jackson;Gianfranco Sienra;P. Santoro;M. Fossati - 通讯作者:
M. Fossati
Body size is a better predictor of intra- than interspecific variation of animal stoichiometry across realms
与种间相比,体型更能预测不同领域动物化学计量的种内变异
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mark P. Nessel;Olivier Dézerald;Julian Merder;Karl Andraczek;Ulrich Brose;Michał Filipiak;Michelle Jackson;M. Jochum;Stanley Harpole;H. Hillebrand;Shawn J. Leroux;R. Onstein;George L. W. Perry;Rachel Paseka;Amanda Rugenski;Judith Sitters;Erik Sperfeld;M. Striebel;E. Zandonà;H. Doi;Nico Eisenhauer;V. Farjalla;N. Gotelli;James M. Hood;P. Kratina;Eric K. Moody;Liam N. Nash;Anton M. Potapov;Gustavo Q. Romero;Jean;Stefan Scheu;J. Seeber;W. I. Susanti;A. Tiunov;Angélica L. González - 通讯作者:
Angélica L. González
EMPOWER: The development and pilot-testing of an evidence-based weight loss mobile telephone app
- DOI:
10.1016/j.orcp.2014.10.009 - 发表时间:
2014-12-01 - 期刊:
- 影响因子:2.9
- 作者:
Kylie Ball;Kok-Leong Ong;Michelle Jackson;Jing Zhang;Sarah McNaughton;David Crawford - 通讯作者:
David Crawford
Michelle Jackson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle Jackson', 18)}}的其他基金
Cumulative impacts of multiple stressors: improving temporal and biological realism
多种压力源的累积影响:提高时间和生物现实性
- 批准号:
NE/V001396/1 - 财政年份:2021
- 资助金额:
$ 51.81万 - 项目类别:
Research Grant
A SECONDARY ANALYSIS OF DATA MID CAREER FELLOWSHIP
职业生涯中期数据的二次分析
- 批准号:
RES-163-27-1002 - 财政年份:2006
- 资助金额:
$ 51.81万 - 项目类别:
Fellowship
相似海外基金
PAthways of Chemcials Into Freshwaters and their ecological ImpaCts (PACIFIC)
化学品进入淡水的途径及其生态影响(太平洋)
- 批准号:
NE/X015777/1 - 财政年份:2022
- 资助金额:
$ 51.81万 - 项目类别:
Research Grant