DEVELOPMENT LOW TEMPERATURE AFM/FREEZE FRACTURE AND ETCH
开发低温 AFM/冷冻断裂和蚀刻
基本信息
- 批准号:6188364
- 负责人:
- 金额:$ 18.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-08-15 至 2001-09-08
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION: (Adapted from the applicant's abstract) The atomic force
microscope (AFM) uses a sharp probe to obtain the surface topology of the
specimen, which has been applied to a broad range of biological materials.
Despite its ability of high spatial resolution on hard materials, the
resolution obtained on hydrated biological samples has been much lower,
except for a few special cases. A major limiting factor in achieving high
resolution is the softness of these materials and the relatively large probe
force used in an AFM. Even with 0.l nN probe force, the pressure at the
probe-sample contact can still be thousands of times the atmospheric
pressure at nm resolution. Since the probe force is limited by the thermal
noise and other factors, cryonic temperature AFM has been suggested as an
alternative to overcome these limitations.
In the previous project period, the investigators claim to have successfully
constructed a cryo-AFM in liquid nitrogen vapor under ambient pressure. It
was demonstrated that this was the preferred approach over a vacuum-based
system, because surface contamination, a major problem for vacuum-based
cryo-AFMs, is completely eliminated. High resolution AFM images of
biological macromolecules were obtained at temperatures below l00 K,
demonstrating the potential of cryo-AFM for structural research. Most
importantly, direct measurements on individual IgG and DNA indicate that the
Young's modulus, a measure of the stiffness of a material, is l,000-10,000
times greater at cryogenic temperatures, providing the most important
validation of the cryo-AFM for structural biology. To date, this is the
only functional cryo-AFM suitable for biological research.
In this renewal period, the investigators plan to continue their effort in
the development of cryo-AFM for structural biology. In addition to
continued instrumental improvement, the methodology for high-resolution
biological cryo-AFM will be the main focus, which includes both the specimen
preparation technique, such as freeze fracture, and the fabrication of
super-sharp AFM tips. To achieve these objectives, they will construct a
self-contained contamination-free specimen preparation station and will
modify an existing scanning electron microscope for depositing super-sharp
tips on a cantilever. With these instruments, they will characterize the
necessary procedures for preparing high-quality biological samples. Their
ultimate goal is to achieve a surface resolution of better than l nm on
macromolecules and to have the ability to image the fractured surfaces so
that the trans-membrane domains of an integral membrane protein can be
directly evaluated without other treatments, such as heavy metal shadowing.
Such a high resolution will enable to study the conformational changes of
proteins and protein-protein, as well as protein-nucleic acids associations.
Other applications of the cryo-AFM include the structure of a cell surface
and 3-D (sectional) imaging of cells and organelles with controlled etching
and removal of exposed materials. These unique capabilities make the
cryo-AFM a versatile, yet powerful, structural probe for biology.
描述:(改编自申请人的摘要)原子力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ZHIFENG SHAO其他文献
ZHIFENG SHAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ZHIFENG SHAO', 18)}}的其他基金
Feasibility: Non-Contact Cryo-Atomic Force Microscope High Resolution Bioimaging
可行性:非接触式冷冻原子力显微镜高分辨率生物成像
- 批准号:
7683997 - 财政年份:2007
- 资助金额:
$ 18.34万 - 项目类别:
Feasibility: Non-Contact Cryo-Atomic Force Microscope High Resolution Bioimaging
可行性:非接触式冷冻原子力显微镜高分辨率生物成像
- 批准号:
7491678 - 财政年份:2007
- 资助金额:
$ 18.34万 - 项目类别:
Feasibility: Non-Contact Cryo-Atomic Force Microscope High Resolution Bioimaging
可行性:非接触式冷冻原子力显微镜高分辨率生物成像
- 批准号:
7024182 - 财政年份:2007
- 资助金额:
$ 18.34万 - 项目类别:
Genomic Mapping of Replication Origins in Higher Eukaryotes by Okazaki Analysis
通过冈崎分析进行高等真核生物复制起点的基因组作图
- 批准号:
7140232 - 财政年份:2005
- 资助金额:
$ 18.34万 - 项目类别:
Genomic Mapping of Replication Origins in Higher Eukaryotes by Okazaki Analysis
通过冈崎分析进行高等真核生物复制起点的基因组作图
- 批准号:
6955609 - 财政年份:2005
- 资助金额:
$ 18.34万 - 项目类别:
Single Molecule Studies of Replication Origin in Metazoa
后生动物复制起源的单分子研究
- 批准号:
6772137 - 财政年份:2004
- 资助金额:
$ 18.34万 - 项目类别:
Single Molecule Studies of Replication Origin in Metazoa
后生动物复制起源的单分子研究
- 批准号:
7270433 - 财政年份:2004
- 资助金额:
$ 18.34万 - 项目类别:
Single Molecule Studies of Replication Origin in Metazoa
后生动物复制起源的单分子研究
- 批准号:
6929730 - 财政年份:2004
- 资助金额:
$ 18.34万 - 项目类别:
Single Molecule Studies of Replication Origin in Metazoa
后生动物复制起源的单分子研究
- 批准号:
7099475 - 财政年份:2004
- 资助金额:
$ 18.34万 - 项目类别:
CRYO-ATOMIC FORCE MICROSCOPY (AFM) OF ACTOMYOSIN COMPLEXES
肌动球蛋白复合物的低温原子力显微镜 (AFM)
- 批准号:
6642359 - 财政年份:2002
- 资助金额:
$ 18.34万 - 项目类别: