NERC-NSFGEO SMARTWATER: Diagnosing controls of pollution hot spots and hot moments and their impact on catchment water quality

NERC-NSFGEO SMARTWATER:诊断污染热点和热点时刻的控制及其对流域水质的影响

基本信息

  • 批准号:
    NE/X018865/1
  • 负责人:
  • 金额:
    $ 70.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Planetary boundaries of river water pollution are at risk of being breached, with dangerous consequences for human andenvironmental health, economic prosperity, and water security. The current paradigm for environmental management ispredicated on understanding of average conditions. However, we know environmental pollution ca vary markedly in spaceand time. This interdisciplinary Large Grant (co-created with non-academic partners and as NERC-NSF collaboration) willpioneer innovations in experimental analytics, data science and mathematical modelling to yield new mechanisticunderstanding of the dynamic drivers of multi-contaminant pollution hotspots (spaces) and hot moments (times) in achanging water world.The diagnosis of the impact of these locations and periods when average pollution conditions are far exceeded on largescale and long-term river basin water quality is critical to inform local and global adaptation and mitigation strategies forriver pollution and develop interventions to keep within a safe(r) 'operating space' and improve water quality for people andthe environment. SMARTWATER will therefore integrate environmental sensing, network and data science innovations,and mathematical modelling with stakeholders' catchment knowledge to transform the way we diagnose, understand,predict, and manage water pollution hotspots and hot moments.We will:1. Pioneer the application of scalable field diagnostic technologies for water quality sensing and sampling for identifyingand characterising multi-pollution hotspots and hot moments for emerging (e.g., wastewater indicators, pharmaceuticals,pesticides) and legacy (e.g., nutrients) contaminants.2. Develop smart water quality monitoring network solutions at river basin scale based on integrating high-resolutionnetworks of proxy water pollution indicators with multivariate UAV boat-based longitudinal river network sampling tounderstand the footprint, propagation and persistence of pollution hotspots and hot moments in river basins.3. Develop and apply data science innovations integrating deep machine learning and artificial intelligence approaches forpollution source attribution and to identify how hotspots and hot moments of multi-pollutions dynamics results from pollutionsource activation, connectivity and river network transport and transformation.4. Demonstrate the utility of the new generation of smart pollution data to improve the capacity of integrated river basinscale water quality models to adequately present and predict the emergence of pollution hotspots and hot momentsincluding their large-scale footprint and longer-term relevance for catchment water pollution.5. Co-create with our stakeholder community pathways for successfully implementing practical and policy relevant changesin water quality management practice and use the interdisciplinary and inter-sectoral expertise of our broad stakeholderbase to inform knowledge generation and dissemination pipelines in SMARTWATER.The mechanistic process understanding and integrated technological and management solutions that will be developed inSMARTWATER will allow a step change in the diagnostics, prediction and management of water pollution and transformour ability to understand and tackle pollution pressures of increasing complexity in a rapidly changing environment.
河流水污染的地球边界有被突破的危险,对人类和环境的心理健康、经济繁荣和水安全造成危险的后果。目前的环境管理模式是建立在对平均条件的理解之上的。然而,我们知道环境污染在空间和时间上会有很大的不同。这个跨学科的大型赠款(与非学术合作伙伴共同创建,作为NERC-NSF合作)将在实验分析方面开拓创新,数据科学和数学建模,对多污染物污染热点(空间)和热点时刻(时间)的动态驱动因素产生新的机械理解在大范围和长时间内,对这些地点和时期的影响进行了诊断,这些地点和时期的污染状况远远超过了平均水平,长期河流流域水质对于为地方和全球河流污染适应和缓解战略提供信息,以及制定干预措施以保持在安全的"操作空间“内并为人类和环境改善水质至关重要。因此,SMARTWATER将环境传感、网络和数据科学创新以及数学建模与利益相关者的流域知识相结合,以改变我们诊断、理解、预测和管理水污染热点和热点时刻的方式。率先将可扩展的现场诊断技术应用于水质传感和采样,以识别和表征多污染热点和热点时刻,废水指标、药品、农药)和遗留问题(例如,营养素)污染物。开发流域尺度的智能水质监测网络解决方案,将高分辨率水污染指标网络与基于多变量无人机船的纵向河网采样相结合,以了解流域污染热点和热点时刻的足迹,传播和持续性。3.开发和应用集成深度机器学习和人工智能方法的数据科学创新,用于污染源归因,并识别多污染动态的热点和热点时刻是如何由污染源激活、连通性以及河流网络运输和改造引起的。4.展示新一代智能污染数据的实用性,以提高综合河流流域尺度水质模型的能力,充分展示和预测污染热点和热点时刻的出现,包括其大规模足迹和与流域水污染的长期相关性。与我们的利益相关者社区共同创建路径,以成功实施水质管理实践中的实际和政策相关变化,并利用我们广泛的利益相关者基础的跨学科和跨部门专业知识,为智能水务的知识生成和传播管道提供信息。智能水务将开发的机械过程理解和综合技术和管理解决方案将使诊断发生步骤性变化,预测和管理水污染和改造的能力,以了解和解决日益复杂的污染压力,在迅速变化的环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MJ Bowes其他文献

MJ Bowes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317936
  • 财政年份:
    2024
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317938
  • 财政年份:
    2024
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Standard Grant
NERC-NSFGEO: Imaging the magma storage region and hydrothermal system of an active arc volcano
NERC-NSFGEO:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    2404029
  • 财政年份:
    2024
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Continuing Grant
NERC - NSFGEO: Pliocene Lessons for the Indian Ocean Dipole (PLIOD)
NERC - NSFGEO:印度洋偶极子的上新世教训 (PLIOD)
  • 批准号:
    NE/Y001443/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Research Grant
NSFGEO-NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
NSFGEO-NERC:灾难之后:大火成岩省火山活动后的神秘排气和延迟恢复
  • 批准号:
    NE/Y00650X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 70.94万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了