Future Rainfall and Flood Extremes (FURFLEX)
未来降雨量和极端洪水 (FURFLEX)
基本信息
- 批准号:NE/Z000076/1
- 负责人:
- 金额:$ 108.29万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Extreme rainfall and flooding cause some of the largest impacts on society out of all meteorological events, and these are predicted to be strongly exacerbated by climate change. In the UK, flood defence planning requires understanding the severity of events at and beyond the 100 year return level (i.e. the magnitude that would be expected to be exceeded once per 100 years on average). Existing predictions are inadequate, relying on simulations of future rainfall changes from small samples of coarse-resolution climate model output and simple statistical flood prediction methods. These approaches do not capture important effects such as rainfall becoming more concentrated in shorter bursts in a warmer climate. The flood prediction datasets are opaque and lead to predictions of financial losses due to flooding three times those observed, giving little confidence in their use to quantify extreme thresholds and project climate change impacts. These problems can be addressed by using physically-based modelling of high-resolution rainfall and flooding, based on fundamental laws. This combines global climate models that simulate large-scale weather states, local-scale weather models to predict detailed precipitation for individual river catchments, hydrological models to predict streamflow in rivers and flood models to determine flood extent and losses. It has not previously been possible to study extreme rainfall and flood events with this approach due to the computational expense of sampling enough of these rare events. Our recent advances have overcome this.We will produce physically-based simulations that quantify extreme high-resolution rainfall, streamflow and flood risks at ~100-1000 year return levels across the UK for the first time, addressing the key policy-relevant events. We will do this for the present up to 2080 and at policy-relevant global warming levels. We will also show the robustness of projections across different models for the first time. We will do this using the following groundbreaking advances made by the project team: - local-scale (2.2km) precipitation projections produced with the "UKCP Local" UK climate model that can capture strongly convective rainfall systems, which have a critical role in flood risk. These have recently produced a great advance in the quality of rainfall simulations.- a very efficient emulator of these high-resolution rainfall simulations based on cutting edge machine learning. This enables large samples of predictions to be produced for studying extremes at low cost, based on existing multi-thousand year, coarse-resolution climate model runs. Unlike previous statistical approaches, the method can produce rainfall predictions with realistic spatial structure, as required for realistic flood modelling.- national-scale hydrological and flood modelling at ~20m resolution, combined with exposure and vulnerability data, which can translate these rainfall predictions into river flows and flood risk, enabling decision-making at the local scale.We will also use our rainfall emulator to show the range of plausible changes in extremes across different climate and hydrological models for the first time, which is necessary for anticipating the most severe possible outcomes and mitigating the associated risks. Once demonstrated, our methods could be applied to a wide range of other phenomena and locations, greatly increasing access to local-scale climate impacts modelling. We will work with our Met Office, Environment Agency and Fathom risk consultancy partners to use our findings to improve flood risk quantification and mitigation for industry and government.
极端的降雨和洪水会导致所有气象事件中对社会的一些最大影响,并且预计气候变化会严重加剧这些影响。在英国,洪水防御计划需要了解在100年回报水平上及以后的事件的严重性(即预计平均每100年一次超过一次的幅度)。现有的预测是不充分的,依赖于对粗分辨率气候模型输出和简单统计洪水预测方法的小样本的降雨变化的模拟。这些方法不会捕获重要的效果,例如在温暖的气候下,降雨变得更加集中在较短的爆发中。洪水预测数据集是不透明的,导致了由于洪水观察到的三倍而导致的财务损失的预测,几乎没有信心量化极端阈值和项目气候变化的影响。这些问题可以通过基于基本法律的高分辨率降雨和洪水的基于物理的建模来解决。这结合了全球气候模型,这些模型模拟了大规模的天气状态,局部规模的天气模型,以预测各个河流集水区的详细降水,水文模型,以预测河流的水流和洪水模型,以确定洪水范围和损失。由于对这些罕见事件进行了足够的计算费用,因此以前无法使用这种方法研究极端的降雨和洪水事件。我们最近的进步已经克服了这一点。我们将首次在英国首次以〜100 - 1000年的回报水平量化极端高分辨率降雨,流量和洪水风险,以解决关键的与政策相关的事件。我们将为目前的2080年和与政策相关的全球变暖水平做到这一点。我们还将首次展示跨不同模型的预测的鲁棒性。我们将使用项目团队的以下开创性进步来做到这一点: - 以“ UKCP本地”英国气候模型生产的地方规模(2.2公里)的降水预测,该模型可以捕获强烈的对流降雨系统,在洪水风险中起着至关重要的作用。这些最近在降雨模拟的质量方面产生了巨大的进步。-基于尖端机器学习的这些高分辨率降雨模拟的非常有效的模拟器。这使得根据现有的多千年的粗分辨率气候模型运行,可以生产大量预测,以低成本研究极端。与以前的统计方法不同,该方法可以产生具有逼真的空间结构的降雨预测,这是逼真的洪水模型所必需的。-国家规模的水文和洪水模型以约20m的分辨率结合在一起,再加上暴露和脆弱性数据,这可以将这些降雨量预测转化为河流的风险和洪水的风险,从而在当地尺度上进行差异。我们将在当地的尺度上进行差异。我们将在降低范围内进行差异。水文模型首次是预期最严重的可能结果并减轻相关风险所必需的。一旦证明,我们的方法可以应用于其他各种现象和位置,从而大大增加了对局部规模的气候影响建模的机会。我们将与我们的大都会办公室,环境局和FATHOM风险咨询合作伙伴合作,利用我们的发现来改善洪水风险量化和缓解行业和政府。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Watson其他文献
Deep brain stimulation for Parkinson’s disease: Australian referral guidelines
- DOI:
10.1016/j.jocn.2008.11.026 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Paul Silberstein;Richard G Bittar;Richard Boyle;Raymond Cook;Terry Coyne;Dudley O’Sullivan;Malcolm Pell;Richard Peppard;Julian Rodrigues;Peter Silburn;Rick Stell;Peter Watson; Australian DBS Referral Guidelines Working Group (Review Group) - 通讯作者:
Australian DBS Referral Guidelines Working Group (Review Group)
From the Editor's Desk.
来自编辑的办公桌。
- DOI:
10.1089/bio.2010.8401 - 发表时间:
2010 - 期刊:
- 影响因子:1.6
- 作者:
Peter Watson - 通讯作者:
Peter Watson
635: Globus pallidus stimulation improves nonmotor aspects of quality of life in advanced Parkinson’s disease
- DOI:
10.1016/j.jocn.2007.02.066 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:
- 作者:
Julian P. Rodrigues;Susan E. Walters;Rick Stell;Peter Watson;Frank L. Mastaglia - 通讯作者:
Frank L. Mastaglia
Slavnov–Taylor identities in Coulomb gauge Yang–Mills theory
库仑规范杨-米尔斯理论中的斯拉夫诺夫-泰勒恒等式
- DOI:
10.1140/epjc/s10052-009-1223-8 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Peter Watson;H. Reinhardt - 通讯作者:
H. Reinhardt
Barrett's oesophagus patients attending hospital: Baseline clinical, patient history and quality of life data from BOSS and AspECT
- DOI:
10.1016/j.ejso.2016.07.039 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:
- 作者:
Sharon Love;Gavin Reilly;Corran Roberts;Adelyn Wise;Paul Moayyedi;Chris Foy;Clive Stokes;John De Caestecker;Stephen Attwood;Peter Watson;Yeng Ang;Pradeep Bhandiri;Oliver Old;Julie Hapeshi;Ian Penman;Colin Rodgers;Cathryn Edwards;David Monk;Krish Ragunath;Danielle Morris - 通讯作者:
Danielle Morris
Peter Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Watson', 18)}}的其他基金
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
- 批准号:
BB/Y00180X/1 - 财政年份:2024
- 资助金额:
$ 108.29万 - 项目类别:
Research Grant
The Future of Extreme European Winter Weather
欧洲极端冬季天气的未来
- 批准号:
NE/S014713/1 - 财政年份:2020
- 资助金额:
$ 108.29万 - 项目类别:
Fellowship
相似国自然基金
冬季雪深和春季降雨量对准噶尔荒漠短命植物类群稳定性贡献和作用机制研究
- 批准号:42301056
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
南亚降雨量轨道尺度变化机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黄河源区高分辨率雨量场构建与多尺度气象水文预报
- 批准号:U2243229
- 批准年份:2022
- 资助金额:245.00 万元
- 项目类别:联合基金项目
南亚降雨量轨道尺度变化机制研究
- 批准号:42206060
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
春季降雨量变化对滨海盐沼湿地植物光合碳分配的影响机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
StormHarvester’s ‘AIFloodPredict’: A unique AI engine and rainfall prediction system to accurately predict advanced flood warning in regions of high vulnerability
StormHarvester 的“AIFloodPredict”:独特的人工智能引擎和降雨量预测系统,可准确预测高度脆弱地区的高级洪水预警
- 批准号:
10045459 - 财政年份:2023
- 资助金额:
$ 108.29万 - 项目类别:
Collaborative R&D
Establishment of AI forecasting technology for the dam storage volume, rainfall, and river flow in Japan and other Asian countries
建立日本等亚洲国家的大坝蓄水量、降雨量、河川流量的人工智能预测技术
- 批准号:
22KK0160 - 财政年份:2022
- 资助金额:
$ 108.29万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
L2M NSERC - Advancing urban flood prediction under heavy rainfall
L2M NSERC - 推进强降雨下的城市洪水预测
- 批准号:
576585-2022 - 财政年份:2022
- 资助金额:
$ 108.29万 - 项目类别:
Idea to Innovation
Sediment and driftwood runoff processes from the river basin during heavy rainfall
强降雨期间流域沉积物和浮木径流过程
- 批准号:
22K14334 - 财政年份:2022
- 资助金额:
$ 108.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Hybrid Flood Forecasting System based on Rainfall Information from Machine Learning Algorithm
基于机器学习算法的降雨信息的混合洪水预报系统开发
- 批准号:
22K04332 - 财政年份:2022
- 资助金额:
$ 108.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)