The Descent of Planets
行星的降临
基本信息
- 批准号:ST/H006060/1
- 负责人:
- 金额:$ 52.95万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over 350 planets have been discovered outside our solar system. Most of these 'extrasolar planets' are similar in mass to Jupiter but have orbits that are much closer to their central star. Planet formation is common, with at least 5% of all Sun-like stars having a Jupiter mass planet in close orbit. Many more stars may have planets that are too small or too far from the host star to be detected with current techniques. The systems that are observed are surprisingly diverse and very different from our solar system. Observations cannot trace the full history of planet formation, but do provide snapshots of either early stages of a dusty gas disk orbiting a young star or the late stages after planetary systems or debris disks have formed. As a result, we cannot observationally connect the early and late stages of planet formation, and it is not known how such a diversity of extrasolar systems arises, or what determines the type of solar system that develops. The solution is to build a testable model that can evolve a broad range of protoplanetary disks (including, but not limited to, the observed protoplanetary disks) through to final planetary systems or debris disks. While the model should reproduce all of the observed end states, many of the final systems produced will not have been observed. Such a complete model of planet formation has eluded the astrophysics community because of numerical limitations and incomplete/unknown physics. In order to make the problem of planet formation more tractable the planet formation process is often divided into separate stages, which are then tackled in isolation. This method has had some success, for example, large (~100 km) planetesimals, the planet building blocks, grow into protoplanets (planetary precursers) of about a lunar mass, and simplified simulations go on to create planetary systems from an assumed initial distribution of protoplanets. However, important properties of our own Solar System are not explained, such as the near circular orbits of the rocky planets, nor the diversity of the extrasolar planets and debris disks. During the next five years I will develop sophisticated and realistic computer models of the planet formation process. In particular, I will show how planetesimals grow from km-sized rocks into lunar-sized protoplanets and ultimately entire solar systems or disks of debris. I will produce a catalogue of solar systems that can be compared with observations. This research will also explain details of our own solar system that have yet to be fully understood (rate of rocky-planet formation and water delivery). Ultimately I will be able to determine whether our solar system is unique, or has many counterparts throughout the Galaxy. The challenge to understand how solar systems and terrestrial planets form is very exciting, for these are the places where we know life can develop. Studying planet formation has a wide benefit to society - for thousands of years people have sought to understand the origin of the Earth and its place in the solar system, and whether the Earth is unique or merely one of a vast number of similar planets scattered throughout the Galaxy and Universe. On a more practical note, sophisticated numerical simulations of complex systems are widely applicable to industry, and these transferable skills will be learned by students in a University environment. Much longer term benefits of understanding the collisional evolution of our solar system include defence against catastrophic asteroid impacts.
在太阳系外已经发现了350多颗行星。这些“太阳系外行星”中的大多数质量与木星相似,但轨道更接近它们的中心星星。行星的形成是很常见的,至少有5%的类太阳恒星在近轨道上有一颗木星质量的行星。更多的恒星可能有行星,这些行星太小或离宿主星星太远,无法用现有技术探测到。我们观察到的系统是惊人的多样化,与我们的太阳系非常不同。观测无法追踪行星形成的完整历史,但确实提供了围绕年轻星星运行的尘埃气体盘的早期阶段或行星系统或碎片盘形成后的后期阶段的快照。因此,我们无法在观测上将行星形成的早期和晚期联系起来,也不知道太阳系外系统的多样性是如何产生的,或者是什么决定了太阳系的发展类型。解决方案是建立一个可测试的模型,可以将广泛的原行星盘(包括但不限于观察到的原行星盘)演化为最终的行星系统或碎片盘。虽然模型应该再现所有观察到的最终状态,但许多最终系统将不会被观察到。这样一个完整的行星形成模型由于数值限制和不完整/未知的物理学而避开了天体物理学界。为了使行星形成的问题更容易处理,行星形成过程通常被分成不同的阶段,然后孤立地处理。这种方法已经取得了一些成功,例如,大的(~100公里)微行星(行星的构建模块)会成长为大约月球质量的原行星(行星前身),然后通过简化的模拟,从假设的原行星初始分布中创建行星系统。然而,我们自己的太阳系的重要性质没有得到解释,例如岩石行星的近圆形轨道,也没有太阳系外行星和碎片盘的多样性。在接下来的五年里,我将开发行星形成过程的复杂和现实的计算机模型。特别是,我将展示星子是如何从千米大小的岩石成长为月球大小的原行星,并最终成长为整个太阳系或碎片盘。我将编制一份太阳系目录,以便与观测结果进行比较。这项研究还将解释我们自己的太阳系尚未完全了解的细节(岩石行星形成和水输送的速度)。最终我将能够确定我们的太阳系是否是独一无二的,或者在整个银河系中是否有许多对应的太阳系。了解太阳系和类地行星如何形成的挑战是非常令人兴奋的,因为这些是我们知道生命可以发展的地方。研究行星的形成对社会有着广泛的好处-数千年来,人们一直在寻求了解地球的起源及其在太阳系中的位置,以及地球是否是独一无二的,或者仅仅是散布在银河系和宇宙中的大量类似行星之一。更实际的是,复杂系统的复杂数值模拟广泛适用于工业,这些可转移的技能将由学生在大学环境中学习。了解我们太阳系的碰撞演化的长期好处包括防御灾难性的小行星撞击。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tidal disruption of satellites and formation of narrow rings Disruption of satellites
卫星的潮汐破坏和狭窄环的形成 卫星的破坏
- DOI:10.1111/j.1365-2966.2012.21328.x
- 发表时间:2012
- 期刊:
- 影响因子:4.8
- 作者:Leinhardt Z
- 通讯作者:Leinhardt Z
COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. II. THE DIVERSITY OF IMPACT OUTCOMES DURING THE END STAGE OF PLANET FORMATION
重力主导物体之间的碰撞。
- DOI:10.1088/0004-637x/751/1/32
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Stewart S
- 通讯作者:Stewart S
FORMING CIRCUMBINARY PLANETS: N -BODY SIMULATIONS OF KEPLER-34
形成环形行星:开普勒 34 的 N 体模拟
- DOI:10.1088/2041-8205/782/1/l11
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Lines S
- 通讯作者:Lines S
Modelling circumbinary protoplanetary disks I. Fluid simulations of the Kepler-16 and 34 systems
环双星原行星盘建模 I. Kepler-16 和 34 系统的流体模拟
- DOI:10.1051/0004-6361/201526295
- 发表时间:2015
- 期刊:
- 影响因子:6.5
- 作者:Lines S
- 通讯作者:Lines S
NUMERICALLY PREDICTED INDIRECT SIGNATURES OF TERRESTRIAL PLANET FORMATION
类地行星形成的间接特征的数值预测
- DOI:10.1088/0004-637x/806/1/23
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Leinhardt Z
- 通讯作者:Leinhardt Z
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zoe Leinhardt其他文献
Zoe Leinhardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zoe Leinhardt', 18)}}的其他基金
Physical constraints on the likelihood of accreting a non-chondritic Earth
对非球粒状地球吸积可能性的物理限制
- 批准号:
NE/K004778/1 - 财政年份:2013
- 资助金额:
$ 52.95万 - 项目类别:
Research Grant
相似海外基金
Imaging the youngest planets
对最年轻的行星进行成像
- 批准号:
DP240103290 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Discovery Projects
RII Track-4:NSF: Assessing the Impact of Jovian Planets on the Existence of Potentially Habitable Planets
RII Track-4:NSF:评估木星行星对潜在宜居行星存在的影响
- 批准号:
2327072 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
Lifting the Veil on Cold Planets in the Inner Galaxy
揭开内星系寒冷行星的面纱
- 批准号:
DP240101842 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Discovery Projects
CAREER: How does external photoevaporation shape planets?
职业:外部光蒸发如何塑造行星?
- 批准号:
2339164 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Continuing Grant
Unseen Architectures: Revealing Low Mass Planets on Long Period Orbits
看不见的结构:揭示长周期轨道上的低质量行星
- 批准号:
2307467 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
Fundamental Processes at Giant Planets in the Solar System and Beyond: Global heating and Saturn's Raining Rings
太阳系及其他地区巨行星的基本过程:全球变暖和土星雨环
- 批准号:
ST/X003426/1 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Fellowship
Observations and methods to discover circumbinary planets
发现绕双星行星的观测和方法
- 批准号:
2886685 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Studentship
Magnetohydrodynamic Simulations Revealing Formation Process of Terrestrial Planets in Protoplanetary Disks
磁流体动力学模拟揭示了原行星盘中类地行星的形成过程
- 批准号:
22KJ0155 - 财政年份:2023
- 资助金额:
$ 52.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows