Racetrack FFAGs for medical, PRISM and energy applications

适用于医疗、PRISM 和能源应用的赛道 FFAG

基本信息

  • 批准号:
    ST/K002503/1
  • 负责人:
  • 金额:
    $ 35.61万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Fixed-field alternating gradient accelerators (FFAGs) are a hybrid between the traditional cyclotrons used early on in the history of particle accelerators, and the synchrotrons that have come to dominate the world of particle physics: CERN's Large Hadron Collider is the largest example of a proton storage ring, which is a type of synchrotron. Although they were first studied over 50 years ago in small experiments, they were initially considered too computationally complex, and early designs intended to deliver high energy particles were larger than alternative designs. However, recent advances have been made both in the radio frequency cavity technology needed to accelerate heavy particles such as protons, and in the computational tools and magnetic designs of the rings themselves. This renaissance has recently culminated in the demonstration by a Manchester-led collaboration in 2012 of the first non-scaling example of an FFAG, in an experiment called EMMA. Non-scaling FFAGs improve on their forebears by having much smaller magnets, which makes them feasible for high energy accelerators. However, the nature of the acceleration process in these rings can give rise to complex resonant effects that must be managed through careful computational design, and modern designs of the focusing and bending magnets.EMMA demonstrated that the non-scaling principle works, but it has a highly-symmetric layout that makes the accelerator larger than it might be. A so-called Racetrack design dispenses with this symmetry and allows a more compact design whilst increasing flexibility and space for the essential injection and extraction systems: the space is put into the racetrack sections, but is saved elsewhere. Racetrack designs can also solve some of the outstanding problems in delivering a high current of particles at high energies, as required in a number of applications. But no proper racetrack design has yet been produced that examines in detail how all the parts would fit together, and what tolerances would be needed in the magnets to allow it to work. Our proposal intends to do just that.In this project we will look at one useful application of a racetrack FFAG, to providing sufficient energy protons (330 MeV) to allow combined patient radiotherapy treatment and imaging. This combination of treatment and imaging is not currently possible with commercial accelerators, and we think that a racetrack FFAG can made simple enough to compete with other solutions whilst delivering the proton energies required. The lessons learned from designing this example machine will then be used to decide how best to use the racetrack FFAG principle in two other important applications. The first of these is the PRISM experiment, which seeks to measure whether muons can spontaneously transform into electrons, a method which probes the limits of the current Standard Model of Particle Physics. PRISM needs an FFAG to help clean up the muon beam before the decay experiment is performed, and a racetrack FFAG could simplify the design greatly. The second application is to help sustainable nuclear energy. A high-power particle accelerator can be used to help fast nuclear reactors dispose of current and future nuclear waste, including the UK plutonium stockpile, but current technology does not yet provide reliable enough accelerators at low cost. A non-scaling FFAG could do both, but a good method of delivering high currents in a compact accelerator has not yet been demonstrated. Again, a racetrack scheme could be used to enable this. In both these applications we will use the solution obtained in the medical study to outline schemes that could be workable. Thus, this project will try to show how the world-leading work in FFAGs recently carried out in the UK can be applied across a range of useful science and technology.
固定场交变梯度加速器(FFAGs)是粒子加速器历史早期使用的传统回旋加速器和已经主导粒子物理世界的同步加速器之间的混合体:CERN的大型强子对撞机是质子存储环的最大例子,这是一种同步加速器。虽然它们在50多年前首次在小型实验中进行了研究,但最初认为它们在计算上过于复杂,并且旨在提供高能粒子的早期设计比其他设计更大。然而,最近在加速质子等重粒子所需的射频腔技术以及环本身的计算工具和磁性设计方面都取得了进展。这种复兴最近在曼彻斯特领导的合作中达到了高潮,在2012年的一个名为EMMA的实验中展示了第一个FFAG的非缩放示例。非缩放FFAG通过具有小得多的磁体来改进它们的祖先,这使得它们适用于高能加速器。然而,这些环中加速过程的性质可能会产生复杂的共振效应,必须通过仔细的计算设计以及聚焦和弯曲磁体的现代设计来管理。EMMA证明了非标度原理的工作原理,但它具有高度对称的布局,使加速器比可能的更大。所谓的赛道设计消除了这种对称性,允许更紧凑的设计,同时增加了基本注射和提取系统的灵活性和空间:空间被放入赛道部分,但在其他地方被节省下来。轨道设计还可以解决在许多应用中需要的以高能量输送高粒子流的一些突出问题。但是,还没有适当的赛道设计,详细检查如何所有的部分将适合在一起,以及什么公差将需要在磁铁,使其工作。在这个项目中,我们将研究一个跑道FFAG的一个有用的应用,提供足够的能量质子(330 MeV),使患者的放射治疗和成像相结合。这种治疗和成像的结合目前在商业加速器上是不可能的,我们认为跑道式FFAG可以做得足够简单,可以与其他解决方案竞争,同时提供所需的质子能量。然后,从设计该示例机器中吸取的教训将用于决定如何在其他两个重要应用中最好地使用赛道FFAG原理。第一个是PRISM实验,它试图测量μ子是否可以自发地转化为电子,这是一种探索当前粒子物理标准模型极限的方法。PRISM需要一个FFAG来帮助在衰变实验之前清理μ子束,而跑道式FFAG可以大大简化设计。第二个应用是帮助可持续核能。高功率粒子加速器可用于帮助快速核反应堆处理当前和未来的核废料,包括英国的钚库存,但目前的技术还不能以低成本提供足够可靠的加速器。一个非缩放的FFAG可以做到这两点,但一个很好的方法,提供高电流的紧凑型加速器尚未得到证明。同样,可以使用赛道方案来实现这一点。在这两个应用中,我们将使用在医学研究中获得的解决方案来概述可行的方案。因此,该项目将试图展示最近在英国进行的FFAGs世界领先的工作如何应用于一系列有用的科学和技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Overview of the Neutrinos from Stored Muons Facility - nuSTORM
储存 μ 子设施中的中微子概述 - nuSTORM
  • DOI:
    10.1088/1748-0221/12/07/p07020
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Adey D
  • 通讯作者:
    Adey D
Medical therapy and imaging fixed-field alternating-gradient accelerator with realistic magnets
具有真实磁铁的医学治疗和成像固定场交变梯度加速器
Normal-conducting scaling fixed field alternating gradient accelerator for proton therapy
用于质子治疗的常导定标固定场交变梯度加速器
Simulation of Dynamics in Ultra-compact Isochronous Medium Energy Racetrack FFAGs
超紧凑等时中能赛道 FFAG 的动力学仿真
  • DOI:
    10.18429/jacow-ipac2014-mopri076
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Appleby Robert
  • 通讯作者:
    Appleby Robert
RFFAG Decay Ring for nuSTORM
nuSTORM 的 RFAG 衰减环
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Pasternak
  • 通讯作者:
    J. Pasternak
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rob Appleby其他文献

Rob Appleby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rob Appleby', 18)}}的其他基金

HL-LHC-UK phase 2
HL-LHC-UK 2 期
  • 批准号:
    ST/T001968/1
  • 财政年份:
    2020
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Research Grant
Science in the Space Shed
太空棚里的科学
  • 批准号:
    ST/S001581/1
  • 财政年份:
    2018
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Research Grant
Mu2e : A proposal to extend the sensitivity to charged lepton flavour violation by 4 orders of magnitude.
Mu2e:一项将带电轻子风味违规的灵敏度扩大 4 个数量级的提案。
  • 批准号:
    ST/P00279X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Research Grant
High Luminosity LHC : UK (HL-LHC-UK)
高亮度大型强子对撞机:英国 (HL-LHC-UK)
  • 批准号:
    ST/N001621/1
  • 财政年份:
    2016
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Research Grant
Tactile Collider : an interactive event for the blind and partially sighted
触觉碰撞器:盲人和弱视人士的互动活动
  • 批准号:
    ST/P000215/1
  • 财政年份:
    2016
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Research Grant
COMET
彗星
  • 批准号:
    ST/M00029X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Research Grant

相似海外基金

Racetrack FFAGs for medical, PRISM and energy applications
适用于医疗、PRISM 和能源应用的赛道 FFAG
  • 批准号:
    ST/K00249X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了