Disentangling QCD and new physics with charmonium resonances at LHCb

通过 LHCb 的粲共振解开 QCD 和新物理

基本信息

  • 批准号:
    ST/M004058/1
  • 负责人:
  • 金额:
    $ 30.22万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The Standard Model (SM) of particle physics describes the properties and interactions of all known particles and forces (except gravity). It tells us that there are 12 fundamental particles and their anti-particles: the 6 quarks, the electron and its heavier cousins the muon and tau as well as their three associated neutrinos. These particles interact with each other via the exchange of the force-carrying bosons: the photon of the electromagnetic interaction; the W and Z particles of the weak interaction that are responsible for radioactive decay; and the gluons of the strong interaction that bind the quarks into the protons and neutrons that compose atomic nuclei.The last piece of the puzzle, the Higgs boson that gives all particles their bare mass, was discovered in 2012 at the Large Hadron Collider (LHC) at CERN, Geneva. Despite this amazing success we know that the SM jigsaw is incomplete as there remain some holes in our knowledge of the Universe. For example, how do we explain gravity, the dominance of matter over anti-matter and how do we account for all of the Dark Matter that we believe exists in the Universe but has so far evaded our detection? The experiments being performed at the LHC are probing the SM at an unprecedented level of energy and precision, trying to test every corner of it to look for signs of where it breaks down. We are searching for something unexpected that may be the first signs of a new theory that gives a more complete picture of the Universe.The LHCb experiment at CERN has recently made some very interesting measurements in the decays of B mesons (particles composed of an anti-bottom (b) quark and a down (d) quark), something that it was designed to do with high precision. The decays of interest are rare, happening only once for every 10^8 B mesons produced, but is is precisely because they are rare that makes them sensitive to potential new physics effects that could appear in the quantum mechanical process that controls the decay. Viewed together, these measurements have hinted that non-SM physics could be playing a role, which has generated significant interest and excitement in the particle physics community, giving rise to different predictions for the source of these effects. However, it is also possible that these anomalies are due to some property of Quantum Chromodynamics (QCD), the part of the SM that explains how the gluons and quarks interact. In particular, B meson decay amplitudes may be modified by unknown effects from resonances of a charm and anti-charm quark (charmonium) that can interfere with the signal process, perhaps mimicking some signs of new physics.Given the complicated nature of QCD, it is important that we try to approach and constrain the problem from many directions. The proposed research will use the data recorded (and soon to be recorded) by LHCb to perform new measurements to understand these new and intriguing anomalies by disentangling the complicated effects of QCD and potential new physics. The LHCb experiment is best placed to perform these studies owing to the efficient triggering system that it uses to select the B decays of interest and the excellent particle identification that is used to suppress backgrounds. In collaboration with particle theorists, we will be able to expand our understanding of these B meson decays and, depending upon what we find, can set the direction for the next programme of measurements that should be made during future data taking periods of the LHC.
粒子物理学的标准模型(SM)描述了所有已知粒子和力(重力除外)的性质和相互作用。它告诉我们有12个基本粒子和它们的反粒子:6个夸克,电子和它的重表兄弟介子和τ以及它们的三个相关的中微子。这些粒子通过携带力的玻色子的交换相互作用:电磁相互作用的光子;弱相互作用中的W和Z粒子导致放射性衰变;强相互作用的胶子将夸克结合成组成原子核的质子和中子。这个谜题的最后一块是希格斯玻色子,它赋予所有粒子裸质量,是2012年在日内瓦欧洲核子研究中心的大型强子对撞机(LHC)上发现的。尽管取得了惊人的成功,但我们知道SM拼图是不完整的,因为我们对宇宙的认识仍有一些漏洞。例如,我们如何解释引力,物质对反物质的主导地位,以及我们如何解释我们认为存在于宇宙中但迄今为止尚未被我们探测到的所有暗物质?在大型强子对撞机上进行的实验正在以前所未有的能量和精度探测SM,试图测试它的每个角落,寻找它在哪里崩溃的迹象。我们正在寻找一些意想不到的东西,这可能是一个新理论的第一个迹象,它可以提供一个更完整的宇宙图景。欧洲核子研究中心(CERN)的LHCb实验最近对B介子(由反底(B)夸克和下(d)夸克组成的粒子)的衰变进行了一些非常有趣的测量,这是设计用于高精度测量的。我们感兴趣的衰变非常罕见,每产生10^8个介子才会发生一次,但正是因为它们非常罕见,所以它们对控制衰变的量子力学过程中可能出现的潜在新物理效应非常敏感。综上所述,这些测量结果暗示了非sm物理可能发挥了作用,这在粒子物理学界引起了极大的兴趣和兴奋,对这些效应的来源产生了不同的预测。然而,也有可能这些异常是由于量子色动力学(QCD)的某些特性造成的,量子色动力学是宇宙中解释胶子和夸克如何相互作用的部分。特别是,B介子的衰减幅度可能会被粲夸克和反粲夸克(charmonium)的共振所产生的未知效应所改变,这些共振可能会干扰信号过程,也许会模仿一些新物理学的迹象。鉴于QCD的复杂性,我们尝试从多个方向来处理和约束这个问题是很重要的。拟议的研究将使用LHCb记录的(即将记录的)数据来进行新的测量,通过解开QCD和潜在的新物理的复杂效应来理解这些新的和有趣的异常。LHCb实验最适合进行这些研究,因为它使用了有效的触发系统来选择感兴趣的B衰变,并且使用了出色的粒子识别来抑制背景。通过与粒子理论家的合作,我们将能够扩展我们对这些B介子衰变的理解,并且根据我们的发现,可以为下一步的测量计划设定方向,这些测量计划应该在未来的LHC数据采集期间进行。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation of the ? b 0 ? ? ? decay
观察?
  • DOI:
    10.1016/j.physletb.2016.05.077
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Aaij R
  • 通讯作者:
    Aaij R
Study of W boson production in association with beauty and charm
研究W玻色子的产生与美丽和魅力的关系
  • DOI:
    10.1103/physrevd.92.052001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Aaij R
  • 通讯作者:
    Aaij R
Erratum to: Measurements of prompt charm production cross-sections in pp collisions at s = 13 $$ \sqrt{s}=13 $$ TeV
勘误:在 s = 13 $$ sqrt{s}=13 $$ TeV 时 pp 碰撞中瞬发魅力产生横截面的测量
A precise measurement of the [Formula: see text] meson oscillation frequency.
  • DOI:
    10.1140/epjc/s10052-016-4250-2
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aaij R;Abellán Beteta C;Adeva B;Adinolfi M;Affolder A;Ajaltouni Z;Akar S;Albrecht J;Alessio F;Alexander M;Ali S;Alkhazov G;Alvarez Cartelle P;Alves AA Jr;Amato S;Amerio S;Amhis Y;An L;Anderlini L;Anderson J;Andreassi G;Andreotti M;Andrews JE;Appleby RB;Aquines Gutierrez O;Archilli F;d'Argent P;Artamonov A;Artuso M;Aslanides E;Auriemma G;Baalouch M;Bachmann S;Back JJ;Badalov A;Baesso C;Baldini W;Barlow RJ;Barschel C;Barsuk S;Barter W;Batozskaya V;Battista V;Bay A;Beaucourt L;Beddow J;Bedeschi F;Bediaga I;Bel LJ;Bellee V;Belloli N;Belyaev I;Ben-Haim E;Bencivenni G;Benson S;Benton J;Berezhnoy A;Bernet R;Bertolin A;Bettler MO;van Beuzekom M;Bien A;Bifani S;Billoir P;Bird T;Birnkraut A;Bizzeti A;Blake T;Blanc F;Blouw J;Blusk S;Bocci V;Bondar A;Bondar N;Bonivento W;Borghi S;Borsato M;Bowcock TJV;Bowen E;Bozzi C;Braun S;Britsch M;Britton T;Brodzicka J;Brook NH;Buchanan E;Bursche A;Buytaert J;Cadeddu S;Calabrese R;Calvi M;Calvo Gomez M;Campana P;Campora Perez D;Capriotti L;Carbone A;Carboni G;Cardinale R;Cardini A;Carniti P;Carson L;Carvalho Akiba K;Casse G;Cassina L;Castillo Garcia L;Cattaneo M;Cauet C;Cavallero G;Cenci R;Charles M;Charpentier P;Chefdeville M;Chen S;Cheung SF;Chiapolini N;Chrzaszcz M;Cid Vidal X;Ciezarek G;Clarke PEL;Clemencic M;Cliff HV;Closier J;Coco V;Cogan J;Cogneras E;Cogoni V;Cojocariu L;Collazuol G;Collins P;Comerma-Montells A;Contu A;Cook A;Coombes M;Coquereau S;Corti G;Corvo M;Couturier B;Cowan GA;Craik DC;Crocombe A;Cruz Torres M;Cunliffe S;Currie R;D'Ambrosio C;Dall'Occo E;Dalseno J;David PNY;Davis A;De Aguiar Francisco O;De Bruyn K;De Capua S;De Cian M;De Miranda JM;De Paula L;De Simone P;Dean CT;Decamp D;Deckenhoff M;Del Buono L;Déléage N;Demmer M;Derkach D;Deschamps O;Dettori F;Dey B;Di Canto A;Di Ruscio F;Dijkstra H;Donleavy S;Dordei F;Dorigo M;Dosil Suárez A;Dossett D;Dovbnya A;Dreimanis K;Dufour L;Dujany G;Dupertuis F;Durante P;Dzhelyadin R;Dziurda A;Dzyuba A;Easo S;Egede U;Egorychev V;Eidelman S;Eisenhardt S;Eitschberger U;Ekelhof R;Eklund L;El Rifai I;Elsasser C;Ely S;Esen S;Evans HM;Evans T;Falabella A;Färber C;Farley N;Farry S;Fay R;Ferguson D;Fernandez Albor V;Ferrari F;Ferreira Rodrigues F;Ferro-Luzzi M;Filippov S;Fiore M;Fiorini M;Firlej M;Fitzpatrick C;Fiutowski T;Fohl K;Fol P;Fontana M;Fontanelli F;C Forshaw D;Forty R;Frank M;Frei C;Frosini M;Fu J;Furfaro E;Gallas Torreira A;Galli D;Gallorini S;Gambetta S;Gandelman M;Gandini P;Gao Y;García Pardiñas J;Garra Tico J;Garrido L;Gascon D;Gaspar C;Gauld R;Gavardi L;Gazzoni G;Gerick D;Gersabeck E;Gersabeck M;Gershon T;Ghez P;Gianì S;Gibson V;Girard OG;Giubega L;Gligorov VV;Göbel C;Golubkov D;Golutvin A;Gomes A;Gotti C;Grabalosa Gándara M;Graciani Diaz R;Granado Cardoso LA;Graugés E;Graverini E;Graziani G;Grecu A;Greening E;Gregson S;Griffith P;Grillo L;Grünberg O;Gui B;Gushchin E;Guz Y;Gys T;Hadavizadeh T;Hadjivasiliou C;Haefeli G;Haen C;Haines SC;Hall S;Hamilton B;Han X;Hansmann-Menzemer S;Harnew N;Harnew ST;Harrison J;He J;Head T;Heijne V;Heister A;Hennessy K;Henrard P;Henry L;Hernando Morata JA;van Herwijnen E;Heß M;Hicheur A;Hill D;Hoballah M;Hombach C;Hulsbergen W;Humair T;Hussain N;Hutchcroft D;Hynds D;Idzik M;Ilten P;Jacobsson R;Jaeger A;Jalocha J;Jans E;Jawahery A;Jing F;John M;Johnson D;Jones CR;Joram C;Jost B;Jurik N;Kandybei S;Kanso W;Karacson M;Karbach TM;Karodia S;Kecke M;Kelsey M;Kenyon IR;Kenzie M;Ketel T;Khanji B;Khurewathanakul C;Kirn T;Klaver S;Klimaszewski K;Kochebina O;Kolpin M;Komarov I;Koopman RF;Koppenburg P;Kozeiha M;Kravchuk L;Kreplin K;Kreps M;Krocker G;Krokovny P;Kruse F;Krzemien W;Kucewicz W;Kucharczyk M;Kudryavtsev V;K Kuonen A;Kurek K;Kvaratskheliya T;Lacarrere D;Lafferty G;Lai A;Lambert D;Lanfranchi G;Langenbruch C;Langhans B;Latham T;Lazzeroni C;Le Gac R;van Leerdam J;Lees JP;Lefèvre R;Leflat A;Lefrançois J;Lemos Cid E;Leroy O;Lesiak T;Leverington B;Li Y;Likhomanenko T;Liles M;Lindner R;Linn C;Lionetto F;Liu B;Liu X;Loh D;Longstaff I;Lopes JH;Lucchesi D;Lucio Martinez M;Luo H;Lupato A;Luppi E;Lupton O;Lusardi N;Lusiani A;Machefert F;Maciuc F;Maev O;Maguire K;Malde S;Malinin A;Manca G;Mancinelli G;Manning P;Mapelli A;Maratas J;Marchand JF;Marconi U;Marin Benito C;Marino P;Marks J;Martellotti G;Martin M;Martinelli M;Martinez Santos D;Martinez Vidal F;Martins Tostes D;Massafferri A;Matev R;Mathad A;Mathe Z;Matteuzzi C;Mauri A;Maurin B;Mazurov A;McCann M;McCarthy J;McNab A;McNulty R;Meadows B;Meier F;Meissner M;Melnychuk D;Merk M;Michielin E;Milanes DA;Minard MN;Mitzel DS;Molina Rodriguez J;Monroy IA;Monteil S;Morandin M;Morawski P;Mordà A;Morello MJ;Moron J;Morris AB;Mountain R;Muheim F;Müller D;Müller J;Müller K;Müller V;Mussini M;Muster B;Naik P;Nakada T;Nandakumar R;Nandi A;Nasteva I;Needham M;Neri N;Neubert S;Neufeld N;Neuner M;Nguyen AD;Nguyen TD;Nguyen-Mau C;Niess V;Niet R;Nikitin N;Nikodem T;Novoselov A;O'Hanlon DP;Oblakowska-Mucha A;Obraztsov V;Ogilvy S;Okhrimenko O;Oldeman R;Onderwater CJG;Osorio Rodrigues B;Otalora Goicochea JM;Otto A;Owen P;Oyanguren A;Palano A;Palombo F;Palutan M;Panman J;Papanestis A;Pappagallo M;Pappalardo LL;Pappenheimer C;Parkes C;Passaleva G;Patel GD;Patel M;Patrignani C;Pearce A;Pellegrino A;Penso G;Pepe Altarelli M;Perazzini S;Perret P;Pescatore L;Petridis K;Petrolini A;Petruzzo M;Picatoste Olloqui E;Pietrzyk B;Pilař T;Pinci D;Pistone A;Piucci A;Playfer S;Plo Casasus M;Poikela T;Polci F;Poluektov A;Polyakov I;Polycarpo E;Popov A;Popov D;Popovici B;Potterat C;Price E;Price JD;Prisciandaro J;Pritchard A;Prouve C;Pugatch V;Puig Navarro A;Punzi G;Qian W;Quagliani R;Rachwal B;Rademacker JH;Rama M;Rangel MS;Raniuk I;Rauschmayr N;Raven G;Redi F;Reichert S;Reid MM;Dos Reis AC;Ricciardi S;Richards S;Rihl M;Rinnert K;Rives Molina V;Robbe P;Rodrigues AB;Rodrigues E;Rodriguez Lopez JA;Rodriguez Perez P;Roiser S;Romanovsky V;Romero Vidal A;W Ronayne J;Rotondo M;Rouvinet J;Ruf T;Ruiz Valls P;Saborido Silva JJ;Sagidova N;Sail P;Saitta B;Salustino Guimaraes V;Sanchez Mayordomo C;Sanmartin Sedes B;Santacesaria R;Santamarina Rios C;Santimaria M;Santovetti E;Sarti A;Satriano C;Satta A;Saunders DM;Savrina D;Schael S;Schiller M;Schindler H;Schlupp M;Schmelling M;Schmelzer T;Schmidt B;Schneider O;Schopper A;Schubiger M;Schune MH;Schwemmer R;Sciascia B;Sciubba A;Semennikov A;Sergi A;Serra N;Serrano J;Sestini L;Seyfert P;Shapkin M;Shapoval I;Shcheglov Y;Shears T;Shekhtman L;Shevchenko V;Shires A;Siddi BG;Silva Coutinho R;Silva de Oliveira L;Simi G;Sirendi M;Skidmore N;Skwarnicki T;Smith E;Smith E;Smith IT;Smith J;Smith M;Snoek H;Sokoloff MD;Soler FJP;Soomro F;Souza D;Souza De Paula B;Spaan B;Spradlin P;Sridharan S;Stagni F;Stahl M;Stahl S;Stefkova S;Steinkamp O;Stenyakin O;Stevenson S;Stoica S;Stone S;Storaci B;Stracka S;Straticiuc M;Straumann U;Sun L;Sutcliffe W;Swientek K;Swientek S;Syropoulos V;Szczekowski M;Szczypka P;Szumlak T;T'Jampens S;Tayduganov A;Tekampe T;Teklishyn M;Tellarini G;Teubert F;Thomas C;Thomas E;van Tilburg J;Tisserand V;Tobin M;Todd J;Tolk S;Tomassetti L;Tonelli D;Topp-Joergensen S;Torr N;Tournefier E;Tourneur S;Trabelsi K;Tran MT;Tresch M;Trisovic A;Tsaregorodtsev A;Tsopelas P;Tuning N;Ukleja A;Ustyuzhanin A;Uwer U;Vacca C;Vagnoni V;Valenti G;Vallier A;Vazquez Gomez R;Vazquez Regueiro P;Vázquez Sierra C;Vecchi S;van Veghel M;Velthuis JJ;Veltri M;Veneziano G;Vesterinen M;Viaud B;Vieira D;Vieites Diaz M;Vilasis-Cardona X;Vollhardt A;Volyanskyy D;Voong D;Vorobyev A;Vorobyev V;Voß C;de Vries JA;Waldi R;Wallace C;Wallace R;Walsh J;Wandernoth S;Wang J;Ward DR;Watson NK;Websdale D;Weiden A;Whitehead M;Wilkinson G;Wilkinson M;Williams M;Williams MP;Williams M;Williams T;Wilson FF;Wimberley J;Wishahi J;Wislicki W;Witek M;Wormser G;Wotton SA;Wright S;Wyllie K;Xie Y;Xu Z;Yang Z;Yu J;Yuan X;Yushchenko O;Zangoli M;Zavertyaev M;Zhang L;Zhang Y;Zhelezov A;Zhokhov A;Zhong L;Zhukov V;Zucchelli S
  • 通讯作者:
    Zucchelli S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Greig Cowan其他文献

Greig Cowan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Greig Cowan', 18)}}的其他基金

Precision $b$-hadron lifetime and $CP$-violation measurements with the LHCb experiment
通过 LHCb 实验精确测量 $b$ 强子寿命和 $CP$ 违规测量
  • 批准号:
    ST/K004646/1
  • 财政年份:
    2013
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Fellowship

相似国自然基金

低镉QTL-qCd2.2的遗传解析及其互斥连锁簇改造
  • 批准号:
    2025JJ60174
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于QCD 因子化理论研究重味强子产生和衰变性质
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
QCD相变临界截止点及其领域性质的全息方法研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
早期宇宙QCD时期的相变
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
基于微扰QCD方法重味强子弱衰变的唯象研究
  • 批准号:
    12375089
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
用全息QCD研究强耦合夸克胶子等离子体
  • 批准号:
    12375140
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
相对论重离子碰撞中研究QCD临界点附近的高阶关联函数
  • 批准号:
    12305143
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
粲重子性质的格点QCD研究
  • 批准号:
    2023JJ30380
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
QCD强耦合常数在全物理能区内精确行为的研究
  • 批准号:
    12305091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于全息QCD的远离平衡手征相变和有限尺寸效应的研究
  • 批准号:
    12305142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Direct lattice QCD simulation of bottom quarks for search for new physics
底夸克直接晶格 QCD 模拟寻找新物理
  • 批准号:
    21H01085
  • 财政年份:
    2021
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New frontiers of hot QCD matter physics: ALICE upgrade and precision measurements of heavy flavors and dielectrons
热点QCD物质物理新前沿:ALICE升级以及重口味和双电子的精确测量
  • 批准号:
    21H04462
  • 财政年份:
    2021
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Lattice QCD study for verification and prediction of new hadrons
用于验证和预测新强子的晶格 QCD 研究
  • 批准号:
    18K03638
  • 财政年份:
    2018
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A New Era for Lattice QCD: Unveiling the Mysteries of a Proton
格子 QCD 的新时代:揭开质子的神秘面纱
  • 批准号:
    1714407
  • 财政年份:
    2017
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Continuing Grant
Using QCD to investigate new physics phenomena at the LHC (Summary to follow)
使用 QCD 研究大型强子对撞机的新物理现象(摘要如下)
  • 批准号:
    1937447
  • 财政年份:
    2017
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Studentship
Explication of new hadron states by lattice QCD
用晶格 QCD 解释新的强子态
  • 批准号:
    15K05068
  • 财政年份:
    2015
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of QCD at low temperature and finite density with a new technique for lattice fermions
利用晶格费米子新技术研究低温有限密度QCD
  • 批准号:
    26800154
  • 财政年份:
    2014
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Hard Probes of Nucleon Structure:New QCD Calculations and Phenomenological Applications
核子结构的硬探针:新的QCD计算和唯象应用
  • 批准号:
    246716612
  • 财政年份:
    2013
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Research Grants
A new model towards holographic QCD
全息QCD的新模型
  • 批准号:
    410093-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A new model towards holographic QCD
全息QCD的新模型
  • 批准号:
    410093-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 30.22万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了