A journey from the solar nebula to planetary bodies: cycling of heat, water and organics

从太阳星云到行星体的旅程:热、水和有机物的循环

基本信息

  • 批准号:
    ST/N000846/1
  • 负责人:
  • 金额:
    $ 48.63万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

In this research programme, planetary scientists and engineers from the University of Glasgow and the Scottish Universities Environmental Research Centre have joined forces to answer important questions concerning the origin and evolution of asteroids, the Moon and Mars. The emphasis of our work is on understanding the thermal histories of these planetary bodies over a range of time and distance scales, and how water and carbon-rich molecules have been transported within and between them.One part of the consortium will explore the formation and subsequent history of asteroids. Our focus is on primitive asteroids, which have changed little since they formed 4500 million years ago within a cloud of dust and gas called the solar nebula. These bodies are far smaller than the planets, but are scientifically very important because they contain water and carbon-rich molecules, both of which are essential to life. We want to understand the full range of materials that went to form these asteroids, and where in the solar nebular they came from. Although they are very primitive, most of these asteroids have been changed by chemical reactions that were driven by liquid water, itself generated by the melting of ice. We will ask whether the heat needed to melt this ice was produced by the decay of radioactive elements, or by collisions with other asteroids. The answer to this question has important implications for understanding how asteroids of all types evolved, and what we may find when samples of primitive asteroids are collected and returned to Earth. Pieces of primitive asteroids also fall to Earth as meteorites, and bring with them some of their primordial water, along with molecules that are rich in carbon. Many scientists think that much of the water on Earth today was obtained from outer space, and consortium researchers would like to test this idea. In order to understand the nature and volume of water and carbon that would have been delivered by meteorites, we first need to develop reliable ways to distinguish extraterrestrial carbon and water from the carbon and water that has been added to the meteorite after it fell to Earth. We plan to do this by identifying 'fingerprints' of terrestrial water and carbon so that they can be subtracted from the extraterrestrial components. One of the main ways in which this carbon was delivered to Earth during its earliest times was by large meteorites colliding with the surface of our planet at high velocities. Thus we also wish to understand the extent to which the extraterrestrial carbon was preserved or transformed during these energetic impact events.The formation and early thermal history of the moon is another area of interest for the consortium. In particular, we will ask when its rocky crust was formed, and use its impact history to determine meteorite flux throughout the inner solar system. To answer these questions we will analyse meteorites and samples collected by the Apollo and Luna missions to determine the amounts of chemical elements including argon and lead that these rocks contain. Information on the temperature of surface and sub-surface regions of Mars can help us to understand processes including the interaction of the planet's crust with liquid water. In order to be able to explore these processes using information on the thermal properties of martian rocks that will soon to be obtained by the NASA InSight lander, we will undertake a laboratory study of the effects of heating and cooling on a simulated martian surface. Hot water reaching the surface of Mars from its interior may once have created environments that were suitable for life to develop, and minerals formed by this water could have preserved the traces of any microorganisms that were present. We will assess the possibility that such springs could have preserved traces of past martian life by examining a unique high-altitude hot spring system on Earth.
在这一研究方案中,来自格拉斯哥大学和苏格兰大学环境研究中心的行星科学家和工程师联手回答了有关小行星、月球和火星的起源和演变的重要问题。我们的工作重点是了解这些行星体在不同时间和距离尺度上的热历史,以及水和富碳分子如何在它们内部和之间传输。该联盟的一部分将探索小行星的形成和随后的历史。我们关注的是原始小行星,它们自45亿年前在一个被称为太阳星云的尘埃和气体云中形成以来几乎没有变化。这些天体比行星小得多,但在科学上非常重要,因为它们含有水和富含碳的分子,这两者都是生命所必需的。我们想了解形成这些小行星的全部材料,以及它们来自太阳星云的何处。虽然它们非常原始,但这些小行星中的大多数已经被化学反应所改变,这些化学反应是由液态水驱动的,而液态水本身是由冰融化产生的。我们会问融化这些冰所需的热量是由放射性元素的衰变产生的,还是由与其他小行星的碰撞产生的。这个问题的答案对于理解所有类型的小行星是如何演化的,以及当原始小行星的样本被收集并返回地球时,我们可能会发现什么具有重要意义。原始小行星的碎片也会以陨石的形式坠落到地球上,并带来一些原始水,沿着富含碳的分子。许多科学家认为,今天地球上的大部分水是从外太空获得的,联合会的研究人员希望验证这一想法。为了了解陨石所提供的水和碳的性质和体积,我们首先需要开发可靠的方法来区分外星碳和水与陨石坠落地球后添加到陨石中的碳和水。我们计划通过识别地球上的水和碳的“指纹”来做到这一点,这样它们就可以从外星成分中减去。在最早的时期,这种碳被输送到地球的主要方式之一是大型陨石以高速撞击地球表面。因此,我们也希望了解在这些高能撞击事件中,地外碳被保存或转化的程度。月球的形成和早期热历史是该财团感兴趣的另一个领域。特别是,我们将询问它的岩石地壳是何时形成的,并利用它的撞击历史来确定整个太阳系内部的陨石流量。为了回答这些问题,我们将分析阿波罗和月球任务收集的陨石和样本,以确定这些岩石中含有的化学元素,包括氩和铅。有关火星表面和次表面区域温度的信息可以帮助我们了解包括地壳与液态水相互作用在内的过程。为了能够利用美国航天局“洞察号”着陆器不久将获得的火星岩石热特性信息来探索这些过程,我们将对模拟火星表面的加热和冷却效应进行实验室研究。从火星内部到达火星表面的热水可能曾经创造了适合生命发展的环境,这些水形成的矿物可能保存了存在的任何微生物的痕迹。我们将通过检查地球上一个独特的高海拔温泉系统来评估这些温泉可能保存了过去火星生命痕迹的可能性。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Constraints on the Emplacement of Martian Nakhlite Igneous Rocks and Their Source Volcano From Advanced Micro-Petrofabric Analysis
先进微岩组分析对火星 Nakhlite 火成岩及其源火山就位的限制
  • DOI:
    10.1029/2021je007080
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Griffin S
  • 通讯作者:
    Griffin S
Did the R-chondrite Parent Body Experience Onion-shell Cooling?
R球粒陨石母体是否经历过洋葱壳冷却?
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cohen, B.E.
  • 通讯作者:
    Cohen, B.E.
Can the Magmatic Conditions of the Martian Nakhlites be Discerned via Investigation of Clinopyroxene and Olivine Intracrystalline Misorientations?
  • DOI:
    10.1029/2021je007082
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Griffin;L. Daly;S. Piazolo;L. Forman;B. E. Cohen;Martin R Lee;P. Trimby;R. Baumgartner;G. Benedix;B. Hoefnagels
  • 通讯作者:
    S. Griffin;L. Daly;S. Piazolo;L. Forman;B. E. Cohen;Martin R Lee;P. Trimby;R. Baumgartner;G. Benedix;B. Hoefnagels
Understanding the emplacement of Martian volcanic rocks using petrofabrics of the nakhlite meteorites
利用 nakhlite 陨石的石油结构了解火星火山岩的就位
A new high-precision 40 Ar/ 39 Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic-Jurassic boundary
Rochechouart 撞击构造的新高精度 40 Ar/ 39 Ar 年龄:比三叠纪-侏罗纪边界至少早 5 Ma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Robert Lee其他文献

Martin Robert Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Robert Lee', 18)}}的其他基金

The cosmic carbon observatory
宇宙碳观测站
  • 批准号:
    ST/W001128/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
UK leadership in extraterrestrial sample return
英国在外星样本返回方面处于领先地位
  • 批准号:
    ST/T002328/1
  • 财政年份:
    2019
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
Reconstructing thermal and fluid alteration histories of planetary materials
重建行星材料的热和流体变化历史
  • 批准号:
    ST/K000942/1
  • 财政年份:
    2013
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
Flow the water: Insights into the Martian hydrosphere from the nakhlites
流动的水:从 nakhlites 洞察火星水圈
  • 批准号:
    ST/H002960/1
  • 财政年份:
    2011
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
Doctoral Training Grant (DTG) to provide funding for 1 PhD studentship.
博士培训补助金 (DTG) 为 1 名博士生提供资助。
  • 批准号:
    NE/H526919/1
  • 财政年份:
    2009
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Training Grant
Spatial and temporal scales of aqueous alteration in icy planetesimals
冰冷星子中水相变化的时空尺度
  • 批准号:
    ST/G001693/1
  • 财政年份:
    2009
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant

相似国自然基金

基于“夸父一号”HXI载荷和Solar Orbiter /STIX的耀斑X射线暴多视角观测及研究
  • 批准号:
    12303063
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于非富勒烯聚合物太阳能电池的苯并三氮唑类二维共轭聚合物
  • 批准号:
    51673200
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
太阳能吸附制冷管在光热制冷循环中传热特性研究
  • 批准号:
    50976073
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
无线输电关键技术理论与实验研究
  • 批准号:
    60471033
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目
太阳能热风发电系统内能量流和空气流的理论和试验研究
  • 批准号:
    50476078
  • 批准年份:
    2004
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Chemical Evolution of Chondrite Components: Implications for Mixing in the Solar Nebula
球粒陨石成分的化学演化:对太阳星云混合的影响
  • 批准号:
    2442966
  • 财政年份:
    2020
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Studentship
Timing of dissipation of the solar nebula gas and accretion ages of cometary dustof comets based on the 26Al-26Mg chronometry
基于26Al-26Mg测时法的太阳星云气体消散时间和彗星尘埃吸积年龄
  • 批准号:
    18H01263
  • 财政年份:
    2018
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Condensation processes of volatile elements in the primordial solar nebula revealed by multi-isotope chronology
多同位素年代学揭示原始太阳星云中挥发性元素的凝聚过程
  • 批准号:
    17K14423
  • 财政年份:
    2017
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A journey from the solar nebula to planetary bodies: cycling of heat, water and organics
从太阳星云到行星体的旅程:热、水和有机物的循环
  • 批准号:
    ST/N000862/1
  • 财政年份:
    2016
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Research Grant
Study of large scale circulation in early solar nebula using new method of CT analysis of meteorites for the analysis of Hayabusa2 returned samples
使用陨石 CT 分析新方法研究早期太阳星云大尺度环流,用于分析隼鸟 2 号返回的样本
  • 批准号:
    15H03755
  • 财政年份:
    2015
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dust from Supernovae in the Solar Nebula: An Integrated Nano- and Microanalytical Approach
太阳星云超新星尘埃:一种集成的纳米和微观分析方法
  • 批准号:
    248629227
  • 财政年份:
    2014
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Priority Programmes
Isotope anomalies in meteoritic materials and the dynamical evolution of the solar nebula: Constraints from Cr, Ti and O isotopes
陨石材料中的同位素异常和太阳星云的动力学演化:Cr、Ti 和 O 同位素的限制
  • 批准号:
    211716935
  • 财政年份:
    2012
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Priority Programmes
Chemical zoning in pristine objects of chondrites as archive of the thermal and redox history in the early solar nebula and planetesimals
球粒陨石原始物体的化学分区作为早期太阳星云和星子的热和氧化还原历史的档案
  • 批准号:
    211504527
  • 财政年份:
    2012
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Priority Programmes
New method to examine the timing of clear up of solar nebula
检查太阳星云清理时间的新方法
  • 批准号:
    23340170
  • 财政年份:
    2011
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
pre-compaction exposure ages of CAIs in primitive meteorites: clarification of mechanisms of transportation and circulation of materials in the solar nebula
原始陨石中 CAI 的预压实暴露年龄:阐明太阳星云中物质的运输和循环机制
  • 批准号:
    23684046
  • 财政年份:
    2011
  • 资助金额:
    $ 48.63万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了