Reading Solar System Science

阅读太阳系科学

基本信息

  • 批准号:
    ST/R000921/1
  • 负责人:
  • 金额:
    $ 129.64万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

We combine seven research projects in this proposal that will separately and collectively advance our knowledge and understanding of the Sun, interplanetary space, and planets throughout our solar system. We have two main themes - to understand the science behind "Space Weather" and to investigate planets in our solar system to better understand their potential for sustaining life. Space Weather describes the variability of our space environment that can affect technological infrastructure upon which we rely. For example, artificial satellites, aviation systems, power distribution networks and communications can all be affected by the variability of plasma and magnetic fields in near-Earth space. This variability is controlled by the Sun's magnetic cycle and carried by the solar wind through the solar system. Our research will help us understand how the Sun's magnetic field varies from one solar cycle to the next, and will allow us to predict future magnetic activity over the next few decades. We will determine how the interplanetary, or heliospheric, magnetic field is created and destroyed close to the Sun. Results from these two projects will be validated by the upcoming ESA mission Solar Orbiter, due to launch in 2018 and provide new and deep understanding of the nature of the magnetic solar cycle.We will investigate how large solar wind structures, known as Coronal Mass Ejections, change as they are transported throughout the heliosphere. We will use the same data assimilation techniques used worldwide in numerical weather prediction and climate modelling to study the source of the slow solar wind, with velocities of 300-500km/s. These research projects will further our understanding of how the Sun influences near-Earth space and our Space Weather. At Earth, we will investigate how the solar wind controls conditions inside Earth's magnetic bubble, known as the magnetosphere. In this region, the material is so tenuous that collisions between particles are very rare. Instead, the electrons and ions in near-Earth space undergo interactions with electromagnetic waves that change their energy and direction and can lead to significant electron acceleration to relativistic speeds. We will specifically investigate how the electromagnetic waves are energised by variability within the magnetosphere, driven by the variable conditions of the solar wind.The ability of the icy moons around Jupiter to support life will be investigated using state-of-the-art oceanographic models. One of the key factors in the search for life is the availability of nutrients, but we currently have no way of accurately determining what lies under the ice on Europa and Ganymede. We will use modelling to predict how different salinity levels in the sub-ice ocean will influence the space-based observations made by ESA's Jupiter Icy Moons Explorer JUICE, which will launch in 2022 and is due to visit the Jovian system in 2030. The new understanding from this project will allow scientists to use observations from JUICE to probe deep underneath the ice for signs that the moons have the potential to support life.We will investigate the electrification of clouds at Venus. Venus has no protective magnetic field like the Earth or Mercury, and it's proximity to the sun means that space weather effects on Venus' atmosphere may be very different to space weather interactions at other planets. We will build a new laboratory analogue of Venus' atmosphere to determine how droplets within clouds in Venus unique atmosphere become charged. This work is very important to understand the global electrical circuit on Venus and how it is effected by solar activity.
我们在这个计划中结合了七个研究项目,这些项目将单独和共同地促进我们对太阳、星际空间和整个太阳系行星的了解和理解。我们有两个主要主题--了解“太空天气”背后的科学,以及调查太阳系中的行星,以更好地了解它们维持生命的潜力。空间天气描述了我们的空间环境的多变性,这可能会影响我们所依赖的技术基础设施。例如,人造卫星、航空系统、配电网络和通信都可能受到近地空间等离子体和磁场变化的影响。这种变化由太阳的磁周期控制,并由太阳风携带穿过太阳系。我们的研究将帮助我们了解太阳的磁场如何在一个太阳周期与下一个太阳周期之间变化,并使我们能够预测未来几十年的磁场活动。我们将确定行星际或日球层磁场是如何在太阳附近产生和摧毁的。这两个项目的结果将得到欧空局即将于2018年发射的太阳轨道器任务的验证,并提供对磁性太阳周期性质的新的和深入的理解。我们将调查大型太阳风结构,即日冕物质抛射,在它们在日光层中传输时如何变化。我们将使用国际上用于数值天气预报和气候模拟的相同数据同化技术来研究慢太阳风的来源,速度为300-500公里/S。这些研究项目将进一步加深我们对太阳如何影响近地空间和我们的空间天气的理解。在地球上,我们将研究太阳风如何控制地球磁泡内的条件,也就是众所周知的磁层。在这个区域,这种物质是如此稀薄,以至于粒子之间的碰撞非常罕见。相反,近地空间中的电子和离子与电磁波发生相互作用,改变了它们的能量和方向,可能导致电子显著加速到相对论速度。我们将专门研究电磁波是如何由太阳风的变化条件驱动的磁层内的可变性而产生能量的。我们将使用最先进的海洋模型来研究木星周围冰冷卫星支持生命的能力。寻找生命的关键因素之一是营养的可获得性,但我们目前无法准确确定木卫二和木卫三冰层下的内容。我们将使用模型来预测冰下海洋中不同的盐度水平将如何影响欧空局的木星冰冻月球探索者果汁进行的太空观测,该果汁将于2022年发射,并将于2030年访问木星系统。来自该项目的新认识将使科学家能够利用对果汁的观察来探测冰下深处,以寻找卫星具有支持生命的潜力的迹象。我们将调查金星云的带电现象。金星没有地球或水星那样的保护性磁场,而且它离太阳很近,这意味着空间天气对金星大气的影响可能与其他行星上的空间天气相互作用非常不同。我们将建立一个新的金星大气的实验室模拟,以确定金星独特大气中的云滴是如何带电的。这项工作对于理解金星上的全球电路以及它如何受到太阳活动的影响非常重要。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrical effects on droplet behaviour
电学对液滴行为的影响
  • DOI:
    10.1088/1742-6596/2702/1/012015
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Airey M
  • 通讯作者:
    Airey M
Particle-in-Cell Experiments Examine Electron Diffusion by Whistler-Mode Waves: 2. Quasi-Linear and Nonlinear Dynamics
细胞内粒子实验通过惠斯勒模式波检查电子扩散:2. 准线性和非线性动力学
  • DOI:
    10.1029/2020ja027949
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allanson O
  • 通讯作者:
    Allanson O
SIR-HUXt -- a particle filter data assimilation scheme for assimilating CME time-elongation profiles
SIR-HUXt——用于同化 CME 时间伸长剖面的粒子滤波器数据同化方案
  • DOI:
    10.48550/arxiv.2210.02122
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barnard L
  • 通讯作者:
    Barnard L
HUXt -- An open source, computationally efficient reduced-physics solar wind model, written in Python
HUXt——一种开源、计算高效的简化物理太阳风模型,用 Python 编写
  • DOI:
    10.48550/arxiv.2210.00455
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barnard L
  • 通讯作者:
    Barnard L
Characteristics of Desert Precipitation in the UAE Derived from a Ceilometer Dataset
根据云高计数据集得出的阿联酋沙漠降水特征
  • DOI:
    10.3390/atmos12101245
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Airey M
  • 通讯作者:
    Airey M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clare Emily Jane Watt其他文献

Clare Emily Jane Watt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clare Emily Jane Watt', 18)}}的其他基金

Effects of Temporal Variability on Wave-Particle Interactions in Magnetospheric Plasma
磁层等离子体中波粒相互作用的时间变化的影响
  • 批准号:
    ST/W000369/1
  • 财政年份:
    2021
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Research Grant
Modelling the acceleration, transport and loss of radiation belt electrons to protect satellites from space weather (Rad-Sat)
对辐射带电子的加速、传输和损失进行建模,以保护卫星免受空间天气的影响 (Rad-Sat)
  • 批准号:
    NE/P017274/2
  • 财政年份:
    2020
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Research Grant
Satellite Radiation Risk Forecasts (Sat-Risk)
卫星辐射风险预测(Sat-Risk)
  • 批准号:
    NE/V002759/1
  • 财政年份:
    2020
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Research Grant
Determining energy pathways for the energisation of radiation belt electrons by very low frequency waves
确定极低频波为辐射带电子提供能量的能量路径
  • 批准号:
    ST/W002078/1
  • 财政年份:
    2020
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Research Grant
Satellite Radiation Risk Forecasts (Sat-Risk)
卫星辐射风险预测(Sat-Risk)
  • 批准号:
    NE/V002759/2
  • 财政年份:
    2020
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Research Grant
Modelling the acceleration, transport and loss of radiation belt electrons to protect satellites from space weather (Rad-Sat)
对辐射带电子的加速、传输和损失进行建模,以保护卫星免受空间天气的影响 (Rad-Sat)
  • 批准号:
    NE/P017274/1
  • 财政年份:
    2017
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Research Grant
Reading solar system science
阅读太阳系科学
  • 批准号:
    ST/M000885/1
  • 财政年份:
    2015
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Research Grant

相似国自然基金

基于“夸父一号”HXI载荷和Solar Orbiter /STIX的耀斑X射线暴多视角观测及研究
  • 批准号:
    12303063
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Planet Formation at Solar System Scales with the James Webb Space Telescope
使用詹姆斯·韦伯太空望远镜观察太阳系行星的形成
  • 批准号:
    DP230101439
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Discovery Projects
Energy interface engineering for self-sustaining solar thermal distillation system: Enhancement of atmospheric cooling using microstructured surface layers
自持太阳能热蒸馏系统的能量界面工程:利用微结构表面层增强大气冷却
  • 批准号:
    23K04652
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quasi-Parallel Shocks across the Solar System
整个太阳系的准平行激波
  • 批准号:
    2897122
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Studentship
BIOAVAILABILITY OF ORGANICS FOR LIFE IN THE SOLAR SYSTEM
太阳系生命有机物的生物利用度
  • 批准号:
    2903266
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Studentship
Fundamental Processes at Giant Planets in the Solar System and Beyond: Global heating and Saturn's Raining Rings
太阳系及其他地区巨行星的基本过程:全球变暖和土星雨环
  • 批准号:
    ST/X003426/1
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Fellowship
A Novel Environment/Solar-Interactive and Building-Integrate-able Power Generation System Enabling Harness of Solar and Environmental Energy
一种新型环境/太阳能交互和建筑一体化发电系统,能够利用太阳能和环境能源
  • 批准号:
    EP/X021831/1
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Fellowship
Collaborative Research: Developing optimally customized-mode-selective photonic lanterns to enable the characterization of hundreds of exoplanets on solar system.
合作研究:开发最佳定制模式选择光子灯笼,以表征太阳系上数百颗系外行星。
  • 批准号:
    2308361
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Standard Grant
Innovative Geodetic Surveys for Determining Surface and Internal Structures of Solar System Small Bodies
用于确定太阳系小天体表面和内部结构的创新大地测量
  • 批准号:
    23K17710
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Towards an absolute chronology of the outer Solar System
外太阳系的绝对年表
  • 批准号:
    22KJ1286
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on the fractionation process of moderately volatile elements in the early Solar System based on iron sulfide formation experiments
基于硫化铁形成实验的早期太阳系中挥发性元素分馏过程研究
  • 批准号:
    22KJ0568
  • 财政年份:
    2023
  • 资助金额:
    $ 129.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了