Applying an astrophysics modelling tool to improve the diagnosis and treatment of cancers
应用天体物理学建模工具改善癌症的诊断和治疗
基本信息
- 批准号:ST/R004986/1
- 负责人:
- 金额:$ 37.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of light is fundamental to a diverse range of medical advances in diagnostics and therapy. For example we can use a handheld devices to detect elevated bilirubin levels in neonates, apply lasers to surgically resect tissue, deploy cameras to image cancerous tissue during surgery, and destroy cancer cells using photodynamic therapy. In the future we may be able to treat tumours using optically heated nanoparticles, or diagnose breast cancer without the necessity for a biopsy. All these technologies rely on a deep understanding of the complex interplay between optical radiation and tissue. As light propagates through the body it can be scattered and absorbed, it can cross boundaries between different tissues where it can be reflected and refracted, and its frequency can be changed by inelastic scattering or fluorescence. Furthermore the material through which the light travels may be highly heterogeneous and anisotropic, and display intricate anatomical structures on a wide variety of scales.If we can develop a numerical model of sufficient complexity we may construct a digital phantom of the relevant tissue, and conduct numerical experiments in silico. We can fabricate model devices, illuminate tissue with a wide range of intensities and wavelengths, and investigate how varying the model parameters affects the heating of the tissue, the dosage for photodynamic therapy, or the detection of fluorescent photons. Furthermore these experiments can be conducted rapidly, cheaply, and safely.Despite the vast differences in scale, the physical and numerical challenges that scientists face when modelling radiative transfer (RT) in the human body are in essence the same as those faced when computing RT models of stars and galaxies. Both regimes contain highly scattering media with complex morphologies on a large range of scales, where polychromatic radiation must be considered and where the absorption and scattering coefficients change with environment. Critically the use of Monte Carlo (MC) modelling techniques (in which light is modelled via a large number of photon 'packets') has become the gold standard in both fields. It is therefore natural to try and exploit the algorithmic and computer science advances that have been made in astrophysical MC codes and apply them to biomedical physics, and this is the essence of this proposal.The University of Exeter is home to the TORUS Monte Carlo code that has been used to model a wide variety of astrophysical phenomena, from planet formation in discs to 21-cm radiation in galaxies. Harries and his team have developed TORUS for over 15 years. In 2016 we obtained funding from the Wellcome Trust to adapt TORUS to tackle biomedical problems. Subsequently we have been awarded a 4-year Carlotta Palmer PhD studentship to investigate the optimisation of photodynamic therapy (PDT) in the treatment of non-melanoma skin cancer, and a 3.5-year EPSRC DTP studentship to model Raman scattering in breast tissue as an aid to cancer diagnosis. We wish to hire an STFC Innovation Fellow to join our nascent biomedical modelling team. The Fellow will work alongside physicists, mathematicians, biologists and clinicians in applying our modelling tool to the diagnosis and treatment of diseases such as breast and skin cancer. They will also work closely with our technology transfer office in investigating the commercial potential of our code by engaging with companies and other non-academic organisations. Throughout the fellowship we will provide the training and mentoring needed to accelerate the Fellow's career to the point at which they can successfully apply for independent funding.
光的使用是诊断和治疗领域各种医学进步的基础。例如,我们可以使用手持设备来检测新生儿胆红素水平的升高,应用激光手术切除组织,在手术过程中部署相机来成像癌变组织,并使用光动力疗法摧毁癌细胞。在未来,我们可能能够使用光学加热的纳米颗粒来治疗肿瘤,或者无需活检就能诊断乳腺癌。所有这些技术都依赖于对光辐射和组织之间复杂相互作用的深刻理解。当光通过人体传播时,它可以被散射和吸收,它可以跨越不同组织之间的边界,在那里它可以被反射和折射,并且它的频率可以通过非弹性散射或荧光来改变。此外,光通过的材料可能是高度非均质和各向异性的,并在各种尺度上显示出复杂的解剖结构。如果我们能够建立一个足够复杂的数值模型,我们就可以构建一个相关组织的数字幻影,并在计算机上进行数值实验。我们可以制造模型装置,以广泛的强度和波长照射组织,并研究模型参数的变化如何影响组织的加热、光动力治疗的剂量或荧光光子的检测。此外,这些实验可以快速、廉价和安全地进行。尽管在尺度上存在巨大差异,但科学家在模拟人体辐射转移(RT)时所面临的物理和数值挑战,在本质上与计算恒星和星系的RT模型时所面临的挑战相同。这两种体制都包含在大范围尺度上具有复杂形态的高散射介质,其中必须考虑多色辐射,并且吸收和散射系数随环境而变化。关键的是,蒙特卡罗(MC)建模技术的使用(其中光通过大量的光子“包”来建模)已经成为这两个领域的黄金标准。因此,尝试和利用天体物理学MC代码中所取得的算法和计算机科学进步并将其应用于生物医学物理学是很自然的,这是本提案的本质。埃克塞特大学是TORUS蒙特卡洛代码的发源地,该代码已被用于模拟各种天体物理现象,从圆盘中的行星形成到星系中的21厘米辐射。Harries和他的团队已经开发了TORUS超过15年。2016年,我们获得了威康信托基金的资助,使TORUS能够解决生物医学问题。随后,我们获得了为期4年的Carlotta Palmer博士奖学金,以研究光动力疗法(PDT)在非黑色素瘤皮肤癌治疗中的优化,并获得了为期3.5年的EPSRC DTP奖学金,以模拟乳腺组织中的拉曼散射,以辅助癌症诊断。我们希望聘请一名STFC创新研究员加入我们新生的生物医学建模团队。该研究员将与物理学家、数学家、生物学家和临床医生合作,将我们的建模工具应用于乳腺癌和皮肤癌等疾病的诊断和治疗。他们还将与我们的技术转让办公室密切合作,通过与公司和其他非学术组织合作,调查我们代码的商业潜力。在整个奖学金期间,我们将提供所需的培训和指导,以加速奖学金获得者的职业发展,使他们能够成功地申请独立资助。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Harries其他文献
Timothy Harries的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Harries', 18)}}的其他基金
Capital Award emphasising support for Early Career Researchers
资本奖强调对早期职业研究人员的支持
- 批准号:
EP/S017682/1 - 财政年份:2019
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant
The formation, structure, and evolution of molecular clouds, stars, and planets
分子云、恒星和行星的形成、结构和演化
- 批准号:
ST/M00127X/1 - 财政年份:2015
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant
A PATT-linked grant to support Exeter's observational astrophysics research
与 PATT 相关的赠款,用于支持埃克塞特的观测天体物理学研究
- 批准号:
ST/I005072/1 - 财政年份:2011
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant
A PATT-linked grant to support Exeter's observational astrophysics research
与 PATT 相关的赠款,用于支持埃克塞特的观测天体物理学研究
- 批准号:
ST/G004293/1 - 财政年份:2009
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant
Radiative feedback in star formation: a novel method for linking SPH and radiation transport
恒星形成中的辐射反馈:一种连接 SPH 和辐射传输的新方法
- 批准号:
EP/F011326/1 - 财政年份:2007
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant
A PATT-linked grant to support Exeter's observational astrophysics research
与 PATT 相关的赠款,用于支持埃克塞特的观测天体物理学研究
- 批准号:
PP/E003435/1 - 财政年份:2007
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant
相似国自然基金
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:11921003
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:11927804
- 批准年份:2019
- 资助金额:1.4 万元
- 项目类别:国际(地区)合作与交流项目
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:11981230269
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:
- 批准年份:2019
- 资助金额:1.8 万元
- 项目类别:
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:
- 批准年份:2019
- 资助金额:1.45 万元
- 项目类别:
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:11973038
- 批准年份:2019
- 资助金额:1.4 万元
- 项目类别:国际(地区)合作与交流项目
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:11981230276
- 批准年份:2019
- 资助金额:2 万元
- 项目类别:国际(地区)合作与交流项目
中英“天体物理(astrophysics)”领域双边研讨会
- 批准号:
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 37.66万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 37.66万 - 项目类别:
Standard Grant
Cubesat Technologies for High Spatial Resolution Astrophysics
用于高空间分辨率天体物理学的立方体卫星技术
- 批准号:
DP240102015 - 财政年份:2024
- 资助金额:
$ 37.66万 - 项目类别:
Discovery Projects
TENSAR - Theory and Experiment for Nuclear Structure, Astrophysics & Reactions
TENSAR - 核结构、天体物理学的理论与实验
- 批准号:
ST/Y000358/1 - 财政年份:2024
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant
REU Site: Computational and Data Intensive Astrophysics at the University of Florida
REU 网站:佛罗里达大学的计算和数据密集型天体物理学
- 批准号:
2348547 - 财政年份:2024
- 资助金额:
$ 37.66万 - 项目类别:
Standard Grant
CAREER: Multimessenger Astrophysics with Pulsar Timing Arrays in the Detection Era
职业:探测时代脉冲星计时阵列的多信使天体物理学
- 批准号:
2339728 - 财政年份:2024
- 资助金额:
$ 37.66万 - 项目类别:
Continuing Grant
A consolidated grant for Sheffield Astrophysics - Transfer to Royal Holloway
谢菲尔德天体物理学综合赠款 - 转学到皇家霍洛威学院
- 批准号:
ST/Z000521/1 - 财政年份:2024
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant
REU Site: Undergraduate Astrophysics Research in Appalachia
REU 网站:阿巴拉契亚本科生天体物理学研究
- 批准号:
2348764 - 财政年份:2024
- 资助金额:
$ 37.66万 - 项目类别:
Standard Grant
Ion-atom collision data for fusion energy, hadron therapy and astrophysics
用于聚变能、强子治疗和天体物理学的离子原子碰撞数据
- 批准号:
DP240101210 - 财政年份:2024
- 资助金额:
$ 37.66万 - 项目类别:
Discovery Projects
2000 + 1: A Maths Space Odyssey - a co-created maths, planetary science and astrophysics digital adventure game
2000 1: A Maths Space Odyssey - 一款共同创作的数学、行星科学和天体物理学数字冒险游戏
- 批准号:
ST/Y003438/1 - 财政年份:2024
- 资助金额:
$ 37.66万 - 项目类别:
Research Grant