Planetary Radiation Belt Physics

行星辐射带物理学

基本信息

  • 批准号:
    ST/S000496/1
  • 负责人:
  • 金额:
    $ 46.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Within the magnetic fields of planets that extend into space are regions of trapped energetic particles that are hazardous to spacecraft and humans. The way these radiation belts vary in intensity is a major focus of scientific endeavour in space science. Understanding the principles of how these dangerous regions in space behave is very important in predicting the level of hazard they pose to spacecraft.At Earth there have been two major advances in radiation belt science: first, that intense electromagnetic waves can increase the energy of electrons to extremely high, relativistic energies via a process called cyclotron resonant wave-particle interactions, and second, that electron transport and acceleration are substantially increased by ultra low frequency (ULF) waves. These two results have transformed generally accepted ideas on the Earth's radiation belts that have lasted 40 years or more, and have spurred new satellite missions such as NASA's Van Allen Probes mission to test these ideas. Intense electromagnetic waves are also observed inside the magnetic fields of Jupiter and Saturn which suggests that the same resonant acceleration, transport and loss processes could be important for all planetary radiation belts. The goal of this proposal is to test the hypothesis that cyclotron resonant wave-particle interactions are major electron acceleration and loss processes at Jupiter and Saturn, and play a major role in the formation of radiation belts at these planets. The results will help determine whether resonant wave acceleration and loss of electrons is a universal process that is more widely applicable to the Sun and stars, as wells the newly discovered planets outside our Solar System. It will help set new research goals for future spacecraft missions to the planets, provide research training for young scientists, develop computer models that will be of use to the space industry in planning future missions to the outer planets, and leave a legacy of understanding that will last long after the completion of the project.
在延伸到太空的行星磁场中,有一些被困的高能粒子区域,这些粒子对航天器和人类都是危险的。这些辐射带的强度变化方式是空间科学科学努力的一个主要重点。了解这些危险区域在空间中的行为原理对于预测它们对航天器构成的危险程度非常重要。在地球上,辐射带科学有两个重大进展:首先,强电磁波可以通过称为回旋共振波-粒子相互作用的过程将电子的能量增加到极高的相对论能量,其次,超低频(ULF)波大大增加了电子传输和加速。这两个结果改变了持续了40年或更长时间的关于地球辐射带的普遍接受的想法,并刺激了新的卫星任务,如NASA的货车艾伦探测器使命来测试这些想法。在木星和土星的磁场内部也观察到强烈的电磁波,这表明相同的共振加速,传输和损失过程对所有行星辐射带都很重要。这个提议的目的是检验一个假设,即回旋共振波粒相互作用是木星和土星的主要电子加速和损失过程,并在这些行星辐射带的形成中发挥重要作用。结果将有助于确定共振波加速和电子损失是否是一个普遍的过程,更广泛地适用于太阳和恒星,因为威尔斯是我们太阳系外新发现的行星。它将有助于为未来的行星航天器任务设定新的研究目标,为年轻科学家提供研究培训,开发可用于航天工业规划未来外行星任务的计算机模型,并留下在项目完成后将长期存在的理解遗产。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid Electron Acceleration in Low-Density Regions of Saturn's Radiation Belt by Whistler Mode Chorus Waves.
惠斯勒模式合唱波在土星辐射带低密度区域的快速电子加速。
  • DOI:
    10.1029/2019gl083071
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Woodfield EE
  • 通讯作者:
    Woodfield EE
Two Techniques for Determining F-Region Ion Velocities at Meso-Scales: Differences and Impacts on Joule Heating
确定介观尺度 F 区离子速度的两种技术:差异和对焦耳热的影响
  • DOI:
    10.1029/2021ja030062
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavanagh A
  • 通讯作者:
    Kavanagh A
Comparing Electron Precipitation Fluxes Calculated From Pitch Angle Diffusion Coefficients to LEO Satellite Observations
  • DOI:
    10.1029/2020ja028410
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. A. Reidy;R. Horne;S. Glauert;M. Clilverd;N. Meredith;E. Woodfield;J. Ross;H. Allison;C. Rodger
  • 通讯作者:
    J. A. Reidy;R. Horne;S. Glauert;M. Clilverd;N. Meredith;E. Woodfield;J. Ross;H. Allison;C. Rodger
A New Approach to Constructing Models of Electron Diffusion by EMIC Waves in the Radiation Belts
  • DOI:
    10.1029/2020gl088976
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    J. Ross;S. Glauert;R. Horne;C. Watt;N. Meredith;E. Woodfield
  • 通讯作者:
    J. Ross;S. Glauert;R. Horne;C. Watt;N. Meredith;E. Woodfield
Revealing the source of Jupiter's x-ray auroral flares.
  • DOI:
    10.1126/sciadv.abf0851
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Yao Z;Dunn WR;Woodfield EE;Clark G;Mauk BH;Ebert RW;Grodent D;Bonfond B;Pan D;Rae IJ;Ni B;Guo R;Branduardi-Raymont G;Wibisono AD;Rodriguez P;Kotsiaros S;Ness JU;Allegrini F;Kurth WS;Gladstone GR;Kraft R;Sulaiman AH;Manners H;Desai RT;Bolton SJ
  • 通讯作者:
    Bolton SJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Horne其他文献

Investigation of ion composition of the inner magnetosphere from magnetosonic wave observations
通过磁声波观测研究内磁层的离子组成
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshizumi Miyoshi;Koji Nomura;Satoshi Kurita;Shoya Matsuda;Kunihiro Keika;Masafumi Shoji;Yoshiya Kasahara;Naritoshi Kitamura;Shinobu Machida;Ondrej Santolik;Craig Kletzing;Scott Boardsen;John Wygant;Richard Horne
  • 通讯作者:
    Richard Horne
Characteristics of PlasmasphericEquatorial Noise from Van Allen Probes observation
范艾伦探测器观测的等离子体层赤道噪声特征
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshizumi Miyoshi;Koji Nomura;Satoshi Kurita;Shoya Matsuda;Kunihiro Keika;Masafumi Shoji;Shinobu Machida;Yoshiya Kasahara;Naritoshi Kitamura;Ondrej Santolik;Craig A. Kletzing;Scott Boardsen;Richard Horne
  • 通讯作者:
    Richard Horne
World employment and social outlook
世界就业和社会展望
  • DOI:
    10.1163/2210-7975_hrd-4022-2015008
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ekkehard Ernst;Miguel Sánchez Martínez;Richard Horne;Lisa Feist;Pascal Kampert;Steven Tobin
  • 通讯作者:
    Steven Tobin

Richard Horne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Horne', 18)}}的其他基金

Satellite Radiation Risk Forecasts (Sat-Risk)
卫星辐射风险预测(Sat-Risk)
  • 批准号:
    NE/V00249X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Research Grant
Modelling the acceleration, transport and loss of radiation belt electrons to protect satellites from space weather (Rad-Sat)
对辐射带电子的加速、传输和损失进行建模,以保护卫星免受空间天气的影响 (Rad-Sat)
  • 批准号:
    NE/P01738X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Research Grant
Electron Acceleration, Transport and Loss in Planetary Radiation Belts
行星辐射带中的电子加速、传输和损失
  • 批准号:
    ST/M00130X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Research Grant
Origin of electron acceleration in the radiation belts of Earth, Jupiter and Saturn
地球、木星和土星辐射带中电子加速的起源
  • 批准号:
    ST/I001727/1
  • 财政年份:
    2012
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Understanding Radiation Belt Electron Fast, Deep Injections in the Inner Magnetosphere
职业:了解辐射带电子在内磁层的快速、深层注入
  • 批准号:
    2338125
  • 财政年份:
    2024
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Continuing Grant
Determining the geomagnetic and heliophysical parameters that control increases and decreases in Earth's outer radiation belt
确定控制地球外辐射带增减的地磁和太阳物理参数
  • 批准号:
    2903408
  • 财政年份:
    2024
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Studentship
The Importance of Nonlinear Physics in Radiation Belt Modelling
非线性物理在辐射带建模中的重要性
  • 批准号:
    NE/V013963/2
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Fellowship
Forecast of Actionable Radiation Belt Scenarios
可操作辐射带情景的预测
  • 批准号:
    10045682
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
    EU-Funded
The Effects of Coupled Wave Power and Plasma Properties on Radiation Belt Dynamics
耦合波功率和等离子体特性对辐射带动力学的影响
  • 批准号:
    NE/X000389/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Research Grant
Is the Solar Wind Electron Strahl a Seed Population for the Earth's Electron Radiation Belt?
太阳风电子斯特拉尔是地球电子辐射带的种子种群吗?
  • 批准号:
    2149822
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Standard Grant
CAREER: A Laboratory Test of Radiation Belt Electron Acceleration and Diffusion by Whistler Chorus
职业:惠斯勒合唱团对辐射带电子加速和扩散的实验室测试
  • 批准号:
    2238191
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM--The Upper Limit of the Earth's Outer Radiation Belt Electron Fluxes
合作研究:GEM--地球外辐射带电子通量上限
  • 批准号:
    2247255
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: GEM--The Upper Limit of the Earth's Outer Radiation Belt Electron Fluxes
合作研究:GEM--地球外辐射带电子通量上限
  • 批准号:
    2247256
  • 财政年份:
    2023
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Continuing Grant
EAGER: Machine Learning and Data Assimilation for Discovery of Generalized Fokker-Planck Equation for Radiation Belt Modeling
EAGER:用于发现辐射带建模的广义福克-普朗克方程的机器学习和数据同化
  • 批准号:
    2211345
  • 财政年份:
    2022
  • 资助金额:
    $ 46.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了