NEW APPLICANT: Enabling rapid observation of compact binary mergers with a network of gravitational-wave observatories

新申请人:利用引力波观测站网络快速观测紧凑型双星合并

基本信息

  • 批准号:
    ST/T000333/1
  • 负责人:
  • 金额:
    $ 27.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Gravitational waves are one of the most remarkable predictions of Einstein's General Theory of Relativity. These can be thought of as ripples in the fabric of spacetime propagating at the speed of light. Gravitational waves are emitted by non-spherically symmetric accelerated masses, such as two black holes or neutron stars orbiting each other. Gravitational waves are incredibly difficult to detect, but in the last years large-scale observatories, including Advanced LIGO, Advanced Virgo and KAGRA, have reached the necessary sensitivity to observe gravitational waves.The first gravitational-wave signal observed in September 2015 was produced by two black holes roughly 35 times the mass of our Sun colliding approximately one billion light years away. Since then nine additional binary black hole mergers have been observed. The crowning achievement of gravitational-wave astronomy to date was the observation of two merging neutron stars in August 2017. This signal was special because it was observed simultaneously as a gamma-ray burst by the Fermi observatory and then, following the release of the gravitational-wave sky localization region to astronomers, was observed across the electromagnetic spectrum.The potential of "multi-messenger" astronomy-observing sources with multiple "messengers", such as gravitational-waves, photons, neutrinos or cosmic rays-is remarkable. We can explore the validity of Einstein's theory in one of the most extreme environments possible. We can make an independent measurement of the rate at which the Universe is accelerating. We can probe the nature of matter deep within a neutron star, where it is so dense that 1 teaspoon of material weighs as much as a mountain on the Earth.However, all of this requires us to actually observe these gravitational-wave signals, and to do it quickly enough that we can alert external astronomers to search for a coincident signal. In this grant we will develop methods to promptly search data from Advanced LIGO, Advanced Virgo and KAGRA to observe the gravitational-wave signature of merging compact objects. We will ensure that such observations are rapidly localized on the sky and that this information is rapidly communicated to external observers. We will also develop techniques to further improve the sensitivity of these searches, allowing us to dig deeper into the noise, and to observe new types of compact binary mergers that have not been observed to date.We will also exploit the astrophysical potential of our observations. We will investigate if double black hole systems form from binary star systems, where both stars have gone through a supernova resulting in a pair of orbiting black holes, or if the two black holes formed in isolation and were later came together as a result of interactions in some dense environment. We will also look to probe the behaviour of matter at the core of neutron stars, one of the most extreme environments in the Universe.
引力波是爱因斯坦相对论一般理论的最显着预测之一。这些可以将其视为时空以光速传播的涟漪。引力波是通过非球体对称加速度质量发出的,例如两个黑洞或中子星相互旋转。 Gravitational waves are incredibly difficult to detect, but in the last years large-scale observatories, including Advanced LIGO, Advanced Virgo and KAGRA, have reached the necessary sensitivity to observe gravitational waves.The first gravitational-wave signal observed in September 2015 was produced by two black holes roughly 35 times the mass of our Sun colliding approximately one billion light years away.从那时起,就观察到了九个额外的二进制黑洞合并。迄今为止,重力波天文学的冠冕成就是在2017年8月观察了两个合并的中子星。该信号是特殊的,因为它是在费米观测观测观察者中同时观察到的,因为它同时被费米观测值爆发,然后在引力 - 波天空本地化向天文学的释放之后,跨越了Electromabnob。具有多个“使者”,例如重力波,光子,中微子或宇宙射线。我们可以在最极端的环境之一中探索爱因斯坦理论的有效性。我们可以独立地测量宇宙加速的速率。我们可以探测中子恒星内物质的性质,在那里它是如此密集,以至于1茶匙的材料的重量与地球上的山峰一样多。但是,所有这些都要求我们实际观察到这些引力波信号,并能够快速地执行此操作,以至于我们可以提醒外部天文学家搜索偶然的信号。在这笔赠款中,我们将开发方法,以迅速从高级Ligo,Advanced Pirgo和Kagra搜索数据,以观察合并紧凑型物体的重力波签名。我们将确保此类观察结果迅速定位在天空中,并将这些信息迅速传达给外部观察者。我们还将开发技术以进一步提高这些搜索的灵敏度,使我们能够深入研究噪声,并观察到迄今尚未观察到的新型紧凑型二元合并。我们还将利用观察结果的天体物理潜力。我们将调查是否是由二进制恒星系统形成的双黑孔系统,这两个恒星都经过了一个超新星,导致一对绕线的黑洞,还是孤立形成的两个黑洞,后来由于某些密集的环境中的相互作用而聚集在一起。我们还将寻求探究物质在中子星的核心(宇宙中最极端环境之一)的核心。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GW190412: Observation of a binary-black-hole coalescence with asymmetric masses
  • DOI:
    10.1103/physrevd.102.043015
  • 发表时间:
    2020-08-24
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Abbott, R.;Abbott, T. D.;Zweizig, J.
  • 通讯作者:
    Zweizig, J.
A Unified $p_\mathrm{astro}$ for Gravitational Waves: Consistently Combining Information from Multiple Search Pipelines
引力波的统一 $p_mathrm{astro}$:一致地组合来自多个搜索管道的信息
  • DOI:
    10.48550/arxiv.2305.00071
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Banagiri S
  • 通讯作者:
    Banagiri S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Harry其他文献

A hierarchical search for gravitational waves from supermassive black hole binary mergers
超大质量黑洞双星合并引力波的分层搜索
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ian Harry;S. Fairhurst;B. Sathyaprakash
  • 通讯作者:
    B. Sathyaprakash
QCD相転移と臨界現象
QCD相变和临界现象
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chris Van Den Broeck;Duncan A. Brown;Thomas Cokelaer;Ian Harry;Gareth Jones;B.S. Sathyaprakash;Hideyuki Tagoshi;Hirotaka Takahashi;藤田裕;国広悌二
  • 通讯作者:
    国広悌二
Template banks to search for compact binaries with spinning components in gravitational wave data
用于在引力波数据中搜索具有旋转成分的紧凑双星的模板库
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chris Van Den Broeck;Duncan A. Brown;Thomas Cokelaer;Ian Harry;Gareth Jones;B.S. Sathyaprakash;Hideyuki Tagoshi;Hirotaka Takahashi
  • 通讯作者:
    Hirotaka Takahashi

Ian Harry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Harry', 18)}}的其他基金

Gravitational Waves at the University of Portsmouth - 24/25
朴茨茅斯大学的引力波 - 24/25
  • 批准号:
    ST/Y005260/1
  • 财政年份:
    2024
  • 资助金额:
    $ 27.25万
  • 项目类别:
    Research Grant
Gravitational Waves at the University of Portsmouth
朴茨茅斯大学的引力波
  • 批准号:
    ST/V005715/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27.25万
  • 项目类别:
    Research Grant

相似海外基金

Contribution of Pediatric OSA in Memory and Learning
儿科 OSA 对记忆和学习的贡献
  • 批准号:
    10348559
  • 财政年份:
    2022
  • 资助金额:
    $ 27.25万
  • 项目类别:
Gravitational-wave Consolidator Grant New Applicant: Royal Holloway
引力波固结器授予新申请人:皇家霍洛威学院
  • 批准号:
    ST/X001806/1
  • 财政年份:
    2022
  • 资助金额:
    $ 27.25万
  • 项目类别:
    Research Grant
Contribution of Pediatric OSA in Memory and Learning
儿科 OSA 对记忆和学习的贡献
  • 批准号:
    10559594
  • 财政年份:
    2022
  • 资助金额:
    $ 27.25万
  • 项目类别:
New Applicant Grant: Exploring the connection between solar flare energetic electrons observed at the Sun and in the heliosphere
新申请人资助:探索在太阳和日光层中观察到的太阳耀斑高能电子之间的联系
  • 批准号:
    ST/V000764/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27.25万
  • 项目类别:
    Research Grant
New Applicant Scheme Consolidated Grant Application in Solar System Studies- Towards the Solar System's Edge: Exploring the Inner Oort Cloud
新申请人计划太阳系研究综合拨款申请-走向太阳系边缘:探索内部奥尔特云
  • 批准号:
    ST/V000691/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了