Probing for New Physics at the LHC: Unraveling the Higgs Mechanism through Polarisation and Hadronic Decays

大型强子对撞机探索新物理学:通过极化和强子衰变揭示希格斯机制

基本信息

  • 批准号:
    ST/T004568/1
  • 负责人:
  • 金额:
    $ 70.89万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The Large Hadron Collider (LHC) at CERN collides protons at the highest energy produced in the laboratory. The ATLAS experiment collects 40 million collision "pictures" per second, selects a small fraction (the most interesting ones) using fast electronic systems, and stores 1 GB of data per second for further analysis. Particle physicists like myself analyse these huge amounts of data, investigating the particles that make up our Universe and studying their interactions.In 2012, the Higgs boson was discovered, confirming a prediction of the Standard Model of particle physics (SM), a theory that accurately predicts a wide range of observed phenomena. Yet, cosmological observations suggest that the SM only explains 4% of the Universe, its "visible" part, with 96% being unknown, and for this reason called dark matter and dark energy. The goal of particle physics is to measure the SM as accurately as possible and search for physics phenomena Beyond the SM (BSM) that dark matter is possibly made of.The vast majority of proton collisions involve its constituents: quarks and the gluons (carriers of the strong force) which hold them together. My work involves the study of the much rarer collision of (weak) vector bosons (W and Z, carriers of the electroweak force) emitted by the protons, using the LHC as a weak boson collider! These processes, known as vector boson scattering (VBS), are highly sensitive to new physics, and could shed light on undiscovered particles that don't interact with quarks and gluons. Gaining a better understanding of the electroweak force through VBS is one very promising path to solving the mystery of dark matter, that some theories predict to be a weakly-interacting particle, and separately, to understanding how fundamental particles acquire mass (and whether the Higgs boson is alone in this process). Studying the electroweak force could be key to explaining the tiny mass of the neutrinos.But probing VBS is very challenging as these are a tiny fraction of collisions, and any subtle sign of new particles is difficult to uncover. My research focuses on techniques to extract the rare VBS events from proton-proton collision data. Using these to select only 60 events among many billions, I had a lead role in the group that observed the production of two W bosons of the same charge, a very rare process that happens once per 20 000 billion collisions (typically once per day at the LHC).The precision of the measurements can be further improved by collecting more data. But an even bigger impact can come from new analysis techniques, such as the identification of hadronic W boson decays (when the W decays to quarks). This is very difficult to do, as many other, more frequent, processes also produce quarks. To achieve this, my research will involve complex machine learning algorithms, similar to those that allow for automatic face recognition or driver-less cars.Also of great interest is the Higgs boson, its interaction with weak bosons, and its self-interaction (HH), even rarer than VBS and which requires an upgraded LHC. These are very important probes of the SM that could yield hints of new physics, as small deviations from the SM can have a large impact on event rates.To improve the precision of measurements, I perform R&D on the detectors used to collect the data, in particular silicon pixel detectors, which are similar to the sensors in digital cameras. At the heart of particle detectors, they are the first that the collision products encounter. I devise and study new detector concepts to cope with the challenges of future particle colliders. High precision silicon detectors are essential to identify the collision event characteristics, the first step towards unraveling the mysteries of our Universe.Finally, I am sensitive to data preservation so that future theories can be tested against ATLAS data, so that the work we do today can help future generations shed light on Nature.
欧洲核子研究中心的大型强子对撞机(LHC)以实验室中产生的最高能量碰撞质子。ATLAS实验每秒收集4000万张碰撞“图片”,使用快速电子系统选择一小部分(最有趣的),并每秒存储1GB的数据以供进一步分析。像我这样的粒子物理学家分析这些大量的数据,调查组成我们宇宙的粒子并研究它们的相互作用。2012年,希格斯玻色子被发现,证实了粒子物理学标准模型(SM)的预测,该理论准确预测了广泛的观测现象。然而,宇宙学观测表明,SM只能解释宇宙的4%,即它的“可见”部分,96%是未知的,因此被称为暗物质和暗能量。粒子物理学的目标是尽可能精确地测量SM,并寻找可能构成暗物质的SM之外的物理现象(BSM)。绝大多数质子碰撞都涉及它的成分:夸克和胶子(强作用力的载体),它们将它们结合在一起。我的工作包括研究质子发射的(弱)矢量玻色子(W和Z,电弱力的载体)的罕见碰撞,使用LHC作为弱玻色子对撞机!这些过程被称为矢量玻色子散射(VBS),对新物理学高度敏感,可以揭示不与夸克和胶子相互作用的未发现粒子。通过VBS更好地理解电弱力是解决暗物质之谜的一条非常有希望的途径,一些理论预测暗物质是一种弱相互作用粒子,并且单独理解基本粒子如何获得质量(以及希格斯玻色子是否在这个过程中是唯一的)。研究电弱力可能是解释中微子微小质量的关键。但探测VBS非常具有挑战性,因为这些只是碰撞的一小部分,而且很难发现任何新粒子的细微迹象。我的研究重点是从质子-质子碰撞数据中提取罕见VBS事件的技术。利用这些数据从数十亿次碰撞中选出60次,我在观察到两个相同电荷的W玻色子产生的小组中担任领导角色,这是一个非常罕见的过程,每20万亿次碰撞发生一次(通常在LHC每天发生一次)。通过收集更多的数据,测量的精度可以进一步提高。但更大的影响可能来自新的分析技术,例如强子W玻色子衰变的识别(当W衰变为夸克时)。这很难做到,因为许多其他更频繁的过程也会产生夸克。为了实现这一目标,我的研究将涉及复杂的机器学习算法,类似于自动人脸识别或无人驾驶汽车的算法。同样令人感兴趣的是希格斯玻色子、它与弱玻色子的相互作用以及它的自相互作用(HH),甚至比VBS更罕见,需要升级大型强子对撞机。这些都是SM的非常重要的探测器,可能会产生新的物理暗示,因为SM的微小偏差可能会对事件率产生很大的影响。为了提高测量精度,我对用于收集数据的探测器进行了研发,特别是硅像素探测器,它类似于数码相机中的传感器。在粒子探测器的核心,它们是碰撞产物遇到的第一个。我设计和研究新的探测器概念,以科普未来粒子对撞机的挑战。高精度硅探测器对于识别碰撞事件特征至关重要,这是揭开我们宇宙奥秘的第一步。最后,我对数据保存很敏感,以便未来的理论可以根据ATLAS数据进行测试,以便我们今天所做的工作可以帮助后代揭示自然。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensitivity to longitudinal vector boson scattering in $?^±?^±??$ at future hadron colliders
未来强子对撞机对纵向矢量玻色子散射的敏感性 $?^±?^±??$
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apyan Aram
  • 通讯作者:
    Apyan Aram
Vector boson scattering processes: Status and prospects
  • DOI:
    10.1016/j.revip.2022.100071
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. B. Franzosi;M. Gallinaro;R. Ruiz;T. Aarrestad;M. Chiesa;A. Costantini;A. Denner;S. Dittmaier-S.-Dittma
  • 通讯作者:
    D. B. Franzosi;M. Gallinaro;R. Ruiz;T. Aarrestad;M. Chiesa;A. Costantini;A. Denner;S. Dittmaier-S.-Dittma
Comparison of ATLAS and CMS VBS Monte Carlo simulation
ATLAS 与 CMS VBS 蒙特卡罗模拟对比
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ATLAS Collaboration
  • 通讯作者:
    ATLAS Collaboration
Hybrid quantum classical graph neural networks for particle track reconstruction
  • DOI:
    10.1007/s42484-021-00055-9
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Cenk Tüysüz;C. Rieger;Kristiane Novotny;B. Demirköz;D. Dobos;K. Potamianos;S. Vallecorsa;J. Vlimant;Richard Forster
  • 通讯作者:
    Cenk Tüysüz;C. Rieger;Kristiane Novotny;B. Demirköz;D. Dobos;K. Potamianos;S. Vallecorsa;J. Vlimant;Richard Forster
Sensitivity to longitudinal vector boson scattering in $\mathbf{W^\pm W^\pm jj}$ at future hadron colliders
未来强子对撞机 $mathbf{W^pm W^pm jj}$ 对纵向矢量玻色子散射的敏感性
  • DOI:
    10.48550/arxiv.2203.07994
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Apyan A
  • 通讯作者:
    Apyan A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karolos Potamianos其他文献

Karolos Potamianos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karolos Potamianos', 18)}}的其他基金

Probing for New Physics at the LHC: Unraveling the Higgs Mechanism through Polarisation and Hadronic Decays
大型强子对撞机探索新物理学:通过极化和强子衰变揭示希格斯机制
  • 批准号:
    ST/T004568/2
  • 财政年份:
    2023
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Fellowship
Expanding the timing frontier: precision timing for particle tracking and identification
扩大计时前沿:粒子跟踪和识别的精确计时
  • 批准号:
    ST/X005062/1
  • 财政年份:
    2022
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Research Grant
Expanding the precision timing frontier for particle tracking at hadron colliders
扩大强子对撞机粒子跟踪的精确定时前沿
  • 批准号:
    ST/W005735/1
  • 财政年份:
    2021
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Research Grant

相似海外基金

Probing the Quantum Vacuum with High Power Laser and 4th Generation Light Sources in the Search for New Physics
用高功率激光和第四代光源探测量子真空,寻找新物理
  • 批准号:
    EP/X01133X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Research Grant
Probing for New Physics at the LHC: Unraveling the Higgs Mechanism through Polarisation and Hadronic Decays
大型强子对撞机探索新物理学:通过极化和强子衰变揭示希格斯机制
  • 批准号:
    ST/T004568/2
  • 财政年份:
    2023
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Fellowship
Probing the Quantum Vacuum with High Power Laser and 4th Generation Light Sources in the Search for New Physics
用高功率激光和第四代光源探测量子真空,寻找新物理
  • 批准号:
    EP/X010791/1
  • 财政年份:
    2023
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Research Grant
Probing new physics with atomic parity violation
探索原子宇称违反的新物理
  • 批准号:
    DP230101685
  • 财政年份:
    2023
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Discovery Projects
Probing new physics in events with two same-charge tau leptons produced in association with two jets with the ATLAS detector
使用 ATLAS 探测器与两个喷流相关产生的两个相同电荷的 tau 轻子来探索新的物理现象
  • 批准号:
    2881514
  • 财政年份:
    2023
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Studentship
Probing PeV-scale new physics using the electron electric dipole moment
利用电子电偶极矩探索 PeV 尺度的新物理
  • 批准号:
    SAPPJ-2019-00057
  • 财政年份:
    2022
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Subatomic Physics Envelope - Project
OPP-PRF: Millimeter-wave Blazar Monitoring With Cosmic Microwave Background Experiments: A New Tool for Probing Blazar Physics
OPP-PRF:利用宇宙微波背景实验进行毫米波耀变体监测:探测耀变体物理的新工具
  • 批准号:
    2219065
  • 财政年份:
    2022
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Standard Grant
Probing new physics theory by the fusion of Higgs sector physics and dark matter physics
希格斯扇区物理与暗物质物理融合探索新物理理论
  • 批准号:
    21K03571
  • 财政年份:
    2021
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probing PeV-scale new physics using the electron electric dipole moment
利用电子电偶极矩探索 PeV 尺度的新物理
  • 批准号:
    SAPPJ-2019-00057
  • 财政年份:
    2021
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Subatomic Physics Envelope - Project
Probing New Physics at the Large Hadron Collider: the Effective Field Theory Pathway
在大型强子对撞机上探索新物理:有效场论途径
  • 批准号:
    2857011
  • 财政年份:
    2021
  • 资助金额:
    $ 70.89万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了