Probing Fundamental Physics with Gravitational-Wave Observations
用引力波观测探索基础物理
基本信息
- 批准号:ST/V005669/1
- 负责人:
- 金额:$ 37.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
When the Laser Interferometer Gravitational Wave Observatory (LIGO) made the first ever detection of a gravitational-wave event, GW150914, in September 2015, yet another remarkable prediction by Einstein's theory of General Relativity was confirmed. Gravitational waves are ripples in spacetime generated by compact objects, like black holes, that travel through the Universe like ocean waves or sound wave propagate in water or the atmosphere. Careful analysis of the LIGO result demonstrated that the origin of GW150914 was the inspiral and merger of two black holes, each with mass about thirty times that of the sun. These waves traveled for 1.2 billion years almost unimpeded through the universe until they hit the two LIGO detectors in 2015, ushering in a new era of physics. LIGO has now been joined by the European Virgo and the Japanese KAGRA detectors, resulting in a global network of observatories. This network has detected dozens of events, including the neutron star merger GW170817 also observed across the entire electromagnetic spectrum, and is expected to make hundreds of new detections in the upcoming fourth observation run O4. Gravitational-wave observations are a tailor made tool in our quest for answers to the most pressing questions in contemporary physics. What is the nature of the enigmatic dark matter and dark energy that make up over 90% of the mass-energy of our universe? Do we need to extend Einstein's theory as suggested by its incompatibility with the laws of quantum physics? How did our universe look like in the early stages of its evolution? What is the behaviour of matter at densities above that of nuclear matter? Do more exotic compact objects, such as wormholes, exist? These are all questions at the heart of STFC's strategic vision and the exploitation of gravitational-wave observations in the quest for answers is the central theme of our project. The determination of the source of a gravitational-wave signal and its properties proceeds in a manner similar to the analysis of finger prints on a crime scene. A finger print (the signal) is compared with a data bank of possible culprits (a gravitational-wave template bank) and, in case of a match, identifies the source. In contrast to the finger-print analogy where an individual source is identified among a finite and discrete set of candidates, however, we are dealing with an infinite number of possible sources in gravitational-wave physics that are characterized by a number of parameters, each of which can vary continuously over a wide range. For example, a black-hole binary is characterized (among other parameters) by the two hole's masses which can take on essentially any positive value. Our results therefore do not emerge in the form of a single exact answer, but a probability distribution over a parameter space. It is critical, for this purpose, to have theoretical predictions of high precision across the spectrum of possible sources. We will generate a wealth of new predictions of this type and analyse them with present and future detector data. More specifically, we will extend the tests of general relativity by modeling black holes for specific modifications to Einstein's theory of gravity and look for hints of these modifications in the observed data. We will improve existing models of large populations of black holes that provide us with a statistical way to measure the expansion of the universe. We will search for gravitational waves from so-called cosmic strings, which are predicted to form in the early universe. The nature of matter at extreme densities can be probed through tidal deformations in neutron stars akin to the tides in the Earth-Moon system, and the modifications they induce in the gravitational-wave signals. Finally, we will search for highly characteristic signatures of more exotic compact objects, such as gravitational-wave echoes which may arise from wormholes.
当激光干涉引力波天文台(LIGO)在2015年9月首次探测到引力波事件GW 150914时,爱因斯坦广义相对论的另一个显着预测得到了证实。引力波是由致密物体(如黑洞)在时空中产生的涟漪,它在宇宙中传播,就像海浪或声波在水中或大气中传播一样。对LIGO结果的仔细分析表明,GW 150914的起源是两个黑洞的螺旋和合并,每个黑洞的质量约为太阳的30倍。这些波在宇宙中几乎畅通无阻地传播了12亿年,直到它们在2015年撞击了两个LIGO探测器,开创了物理学的新时代。现在,欧洲的Virgo和日本的KAGRA探测器也加入了LIGO,形成了一个全球观测站网络。该网络已经探测到数十个事件,包括中子星星合并GW 170817也在整个电磁波谱中观测到,预计在即将到来的第四次观测运行O4中将进行数百次新的探测。引力波观测是我们寻求当代物理学中最紧迫问题答案的一个量身定制的工具。神秘的暗物质和暗能量占我们宇宙质量能量的90%以上,它们的性质是什么?我们是否需要扩展爱因斯坦的理论,因为它与量子物理定律不相容?我们的宇宙在其演化的早期阶段是什么样子的?物质在密度高于核物质时的行为是什么?是否存在更奇特的紧凑物体,如虫洞?这些都是STFC战略愿景的核心问题,而利用引力波观测来寻求答案是我们项目的中心主题。确定引力波信号的来源及其性质的方式与分析犯罪现场的指纹相似。指纹(信号)与可能的罪魁祸首数据库(引力波模板库)进行比较,如果匹配,则识别源。然而,与指纹类比不同的是,在指纹类比中,一个单独的源是从一组有限的、离散的候选者中识别出来的,我们处理的是引力波物理中无限多个可能的源,这些源的特征是许多参数,每个参数都可以在很大的范围内连续变化。例如,一个黑洞双星的特征(以及其他参数)是两个黑洞的质量,这两个黑洞的质量基本上可以取任何正值。因此,我们的结果并不是以一个单一的确切答案的形式出现,而是以一个参数空间上的概率分布的形式出现。为此目的,在可能的来源范围内进行高精度的理论预测至关重要。我们将产生大量这种类型的新预测,并利用当前和未来的探测器数据进行分析。更具体地说,我们将扩展广义相对论的测试,通过对爱因斯坦引力理论的特定修改进行黑洞建模,并在观测数据中寻找这些修改的暗示。我们将改进现有的大量黑洞模型,为我们提供一种测量宇宙膨胀的统计方法。我们将从所谓的宇宙弦中寻找引力波,宇宙弦被预测在早期宇宙中形成。在极端密度下物质的性质可以通过中子星中类似于地月系统中的潮汐的潮汐变形以及它们在引力波信号中引起的修改来探测。最后,我们将寻找更奇特的紧凑物体的高度特征的签名,例如可能来自虫洞的引力波回波。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computing the quasinormal modes and eigenfunctions for the Teukolsky equation using horizon penetrating, hyperboloidally compactified coordinates
使用地平线穿透、双曲面紧致坐标计算 Teukolsky 方程的拟正态模式和本征函数
- DOI:10.17863/cam.86021
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ripley J
- 通讯作者:Ripley J
Violations of Weak Cosmic Censorship in black hole collisions
黑洞碰撞中违反弱宇宙审查制度
- DOI:10.17863/cam.82600
- 发表时间:2022
- 期刊:
- 影响因子:5.4
- 作者:Andrade T
- 通讯作者:Andrade T
Evidence for violations of Weak Cosmic Censorship in black hole collisions in higher dimensions
- DOI:10.1007/jhep03(2022)111
- 发表时间:2020-11
- 期刊:
- 影响因子:5.4
- 作者:T. Andrade;P. Figueras;U. Sperhake
- 通讯作者:T. Andrade;P. Figueras;U. Sperhake
Lessons for adaptive mesh refinement in numerical relativity
数值相对论中自适应网格细化的经验教训
- DOI:10.1088/1361-6382/ac6fa9
- 发表时间:2022
- 期刊:
- 影响因子:3.5
- 作者:Radia M
- 通讯作者:Radia M
The gravitational afterglow of boson stars
玻色子星的引力余辉
- DOI:10.1088/1361-6382/acace4
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:Croft, Robin;Helfer, Thomas;Ge, Bo-Xuan;Radia, Miren;Evstafyeva, Tamara;Lim, Eugene A.;Sperhake, Ulrich;Clough, Katy
- 通讯作者:Clough, Katy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ulrich Sperhake其他文献
Field Redefinition and the Observed Universe
场的重新定义和观测到的宇宙
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Helvi Witek;Vitor Cardoso;Akihiro Ishibashi;Ulrich Sperhake;Kei-ichi Maeda - 通讯作者:
Kei-ichi Maeda
Ulrich Sperhake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Probing Fundamental Physics with Gravitational Experiments
用引力实验探索基础物理
- 批准号:
2309195 - 财政年份:2023
- 资助金额:
$ 37.72万 - 项目类别:
Standard Grant
Probing Fundamental Physics on Cosmological Scales
探索宇宙尺度的基础物理
- 批准号:
2209991 - 财政年份:2022
- 资助金额:
$ 37.72万 - 项目类别:
Standard Grant
MPS-Ascend: Probing Fundamental Physics with Next Generation Gravitational Wave Detectors
MPS-Ascend:利用下一代引力波探测器探索基础物理
- 批准号:
2213266 - 财政年份:2022
- 资助金额:
$ 37.72万 - 项目类别:
Fellowship Award
Probing Fundamental Physics with Gravitational Experiments
用引力实验探索基础物理
- 批准号:
2011520 - 财政年份:2020
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant
Probing Fundamental Physics with Gravitational Experiments
用引力实验探索基础物理
- 批准号:
1912514 - 财政年份:2019
- 资助金额:
$ 37.72万 - 项目类别:
Standard Grant
Probing Fundamental Physics on Cosmological Scales
探索宇宙尺度的基础物理
- 批准号:
1820775 - 财政年份:2018
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant
Probing Fundamental Physics with Gravitational Experiments
用引力实验探索基础物理
- 批准号:
1607391 - 财政年份:2016
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant
CAREER: Probing Fundamental Physics and Cosmic Structure by Maximizing the Impact of Next Generation Microwave Surveys
职业:通过最大化下一代微波巡天的影响来探索基础物理和宇宙结构
- 批准号:
1454881 - 财政年份:2015
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant
Probing Fundamental Physics on Cosmological Scales
探索宇宙尺度的基础物理
- 批准号:
1521097 - 财政年份:2015
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant
Probing Fundamental Physics on Cosmological Scales
探索宇宙尺度的基础物理
- 批准号:
1213563 - 财政年份:2012
- 资助金额:
$ 37.72万 - 项目类别:
Continuing Grant