QI Extension: Developing quantum technologies for fundamental physics
QI Extension:开发基础物理量子技术
基本信息
- 批准号:ST/W006278/1
- 负责人:
- 金额:$ 12.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern physics explains a stunning variety of phenomena from the smallest of scales to the largest and has already revolutionized the world! Lasers, semiconductors, and transistors are at the core of our laptops, mobile phones, and medical equipment. These technologies in turn have enabled us to explore the natural world with ever greater detail, precision, and rigour.Over the last few years, novel quantum technologies are being developed within the National Quantum Technology Programme in the UK and throughout the world that could impact our everyday lives and enable fundamental physics research that leads to new discoveries. Quantum states of light have recently improved the sensitivity of gravitational-wave detectors, whose detections to date have enthralled the public, and superconducting transition-edge-sensors are now used in telescopes that capture high-resolution images of the universe.Despite these successes of modern physics, several profound and challenging questions remain open. Our consortium QI-extension will build on recent advances in quantum technologies, both within our existing consortium QI and beyond, to address two of the most pressing questions: (i) What is the nature of dark matter, and (ii) How can quantum mechanics be united with Einstein's theory of relativity?The first research direction is motivated by numerous observations which suggest that a significant fraction of the matter in galaxies is not directly observed by optical telescopes. Understanding the nature of this mysterious so-called dark matter will shed light on the history of the universe and will trigger new areas of research in fundamental and possibly applied physics. A number of state-of-the-art experiments world-wide are looking for dark matter candidates with no luck so far. The candidates we propose to search for are axions and axion-like-particles (ALPs). These particles are motivated by outstanding questions in particle physics and may account for a significant part, or all of dark matter. First, we will enhance the sensitivity of our current experiment that will detect a dark matter signal or improve the existing limits on the axion-photon coupling by a few orders of magnitude for a large range of axion masses. Second, we will build and characterise a large (8''/200 nm diameter) superconducting nanowire single photon detector to extend dark matter searches.Our second line of research is devoted to the nature of space and time. We have a long list of successful experimental tests of quantum mechanics and Einstein's theory of relativity. But should gravity be united with quantum mechanics? If so, how? As with any open question in physics, experiments can direct us towards the answers.To that end, we propose to study two quantum aspects of space-time. Firstly, we will experimentally investigate the holographic principle, which states that the information content of a volume can be encoded on its boundary. We will exploit quantum states of light and build two ultra-sensitive laser interferometers that will investigate possible correlations between different regions of space with unprecedented sensitivity. We will also use the data to search for scalar dark matter in the galactic halo.Secondly, we will search for signatures of semiclassical gravity models that approximately solve the quantum gravity problems. Building on our existing work on experimentally testing semiclassical models of gravity, we will seek to design table-top experiments that may provide direct signatures of the quantum nature of gravity.Answering these challenging questions of fundamental physics with the aid of modern quantum technologies has the potential to open new horizons for physics research and to reach a new level of understanding of the world we live in. The proposed research directions share the common technological platform of quantum-enhanced interferometry and benefit from the diverse skills of the researchers involved.
现代物理学解释了从最小尺度到最大尺度的各种惊人现象,并已经彻底改变了世界!激光、半导体和晶体管是我们笔记本电脑、移动的手机和医疗设备的核心。这些技术反过来又使我们能够以更细致、更精确和更严谨的方式探索自然世界。在过去的几年里,英国和世界各地的国家量子技术计划正在开发新的量子技术,这些技术可能会影响我们的日常生活,并使基础物理研究能够带来新的发现。光的量子态最近提高了引力波探测器的灵敏度,迄今为止,引力波探测器的探测已经吸引了公众,超导跃迁边缘传感器现在被用于捕获高分辨率宇宙图像的望远镜。尽管现代物理学取得了这些成就,但一些深刻而具有挑战性的问题仍然悬而未决。我们的联盟QI扩展将建立在量子技术的最新进展,无论是在我们现有的联盟QI和超越,以解决两个最紧迫的问题:(i)什么是暗物质的性质,(ii)量子力学如何与爱因斯坦的相对论相结合?第一个研究方向的动机是大量的观察表明,星系中的物质的显着部分是没有直接观察到的光学望远镜。了解这种神秘的所谓暗物质的性质将揭示宇宙的历史,并将引发基础物理和可能的应用物理研究的新领域。世界范围内的一些最先进的实验正在寻找暗物质候选者,但到目前为止还没有找到。我们建议搜索的候选者是轴子和类轴子粒子(ALP)。这些粒子是由粒子物理学中悬而未决的问题激发的,可能占暗物质的很大一部分或全部。首先,我们将提高我们目前实验的灵敏度,该实验将检测暗物质信号,或者将现有的轴子-光子耦合限制提高几个数量级,用于大范围的轴子质量。第二,我们将建造和安装一个大的(8“/200 nm直径)超导纳米线单光子探测器,以扩大暗物质的搜索。我们的第二条研究路线是致力于空间和时间的性质。我们有一长串成功的量子力学和爱因斯坦相对论的实验测试。但是,引力应该与量子力学结合起来吗?如果是,如何做到?正如物理学中任何悬而未决的问题一样,实验可以引导我们找到答案。为此,我们建议研究时空的两个量子方面。首先,我们将实验研究全息原理,该原理指出,体积的信息内容可以在其边界上编码。我们将利用光的量子态,建造两台超灵敏的激光干涉仪,以前所未有的灵敏度研究空间不同区域之间可能的相关性。我们也将利用这些数据来寻找星系晕中的标量暗物质。其次,我们将寻找近似解决量子引力问题的半经典引力模型的特征。在我们现有的实验测试重力的半经典模型的工作的基础上,我们将寻求设计桌面实验,可以提供重力的量子性质的直接签名。在现代量子技术的帮助下解决这些具有挑战性的基础物理问题有可能为物理学研究开辟新的视野,并达到一个新的水平,我们生活在世界的理解。拟议的研究方向共享量子增强干涉测量的共同技术平台,并受益于所涉研究人员的各种技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Hadfield其他文献
Metallurgy and its Influence on Modern Progress: with a Survey of Education and Research
冶金及其对现代进步的影响:教育和研究调查
- DOI:
- 发表时间:
- 期刊:
- 影响因子:64.8
- 作者:
Robert Hadfield - 通讯作者:
Robert Hadfield
Technology development for a low-mass solar system and interstellar communications system
低质量太阳系和星际通信系统的技术开发
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
P. Mauskopf;Roger Angel;Harry A. Atwater;Elisa Bazzani;Karl Berggren;Paul Blase;Roberto Corvaja;Artur Davoyan;T. M. Eubanks;Anna Guglielmi;Robert Hadfield;Michael Hart;Andreas M. Hein;A. Hibberd;Michael Hippke;Tracee L. Jamison;B. Kanté;M. Kelzenberg;Robert G. Kennedy;Peter Klupar;Jeffrey Kuhn;Nicola Laurenti;Martin Lavery;Mansavi Lingam;Philip Lubin;Zachary Manchester;Owen Medeiros;David Messerschmitt;Ian Morrison;Hossein Mosallaei;Thomas Mozdzen;Ricardo Rodriguez;Filippo Romanato;G. Ruffato;James Schalkwyk;Rick Scott;R. Sokhoyan;S. Turyshev;G. Vallone;L. Vangelista;Jose Velazco;P. Villoresi;Andrea Vogliardi;S. P. Worden;Saeed Zeinolabadinzadeh - 通讯作者:
Saeed Zeinolabadinzadeh
低ジッタ超伝導光子同時計数器による古典光HOM干渉観測
使用低抖动超导光子符合计数器进行经典光学 HOM 干涉观测
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
三木茂人;宮嶋茂之;藪野正裕;山下太郎;山本俊;井元信之;生田力三;Robert Hadfield;Robert Kirkwood;寺井弘高 - 通讯作者:
寺井弘高
Robert Hadfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Hadfield', 18)}}的其他基金
Quantum-Enhanced Interferometry for New Physics
新物理学的量子增强干涉测量
- 批准号:
ST/T005920/1 - 财政年份:2020
- 资助金额:
$ 12.37万 - 项目类别:
Research Grant
Integrated superconducting nanobridge fast readout electronics for single photon detector arrays
用于单光子探测器阵列的集成超导纳米桥快速读出电子器件
- 批准号:
EP/M508342/1 - 财政年份:2015
- 资助金额:
$ 12.37万 - 项目类别:
Research Grant
Lithium niobate integrated quantum photonics
铌酸锂集成量子光子学
- 批准号:
EP/I036273/1 - 财政年份:2013
- 资助金额:
$ 12.37万 - 项目类别:
Research Grant
Next generation nanostructured superconducting single-photon detectors
下一代纳米结构超导单光子探测器
- 批准号:
EP/G022151/1 - 财政年份:2009
- 资助金额:
$ 12.37万 - 项目类别:
Research Grant
Ultrafast infrared superconducting single-photon detectors
超快红外超导单光子探测器
- 批准号:
EP/F009968/1 - 财政年份:2007
- 资助金额:
$ 12.37万 - 项目类别:
Research Grant
相似海外基金
Large Amplitude Oscillatory Extension (LAOE)
大振幅振荡扩展 (LAOE)
- 批准号:
24K07332 - 财政年份:2024
- 资助金额:
$ 12.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Greener cleaner composites [extension]
更环保、更清洁的复合材料[扩展]
- 批准号:
MR/Y020057/1 - 财政年份:2024
- 资助金额:
$ 12.37万 - 项目类别:
Fellowship
Development of sustainable bionanocomposite materials for perishable foods & drinks shelf life extension: delivering better food for all
开发用于易腐烂食品的可持续生物纳米复合材料
- 批准号:
10075083 - 财政年份:2023
- 资助金额:
$ 12.37万 - 项目类别:
Collaborative R&D
CReDo+ Climate Resilience Demonstrator (extension to new climate risks)
CReDo 气候复原力演示器(扩展到新的气候风险)
- 批准号:
10061340 - 财政年份:2023
- 资助金额:
$ 12.37万 - 项目类别:
Feasibility Studies
Investigation of compounds that mimic the effects of calorie restriction on healthy life extension and their mechanisms of action
研究模拟热量限制对延长健康寿命的影响的化合物及其作用机制
- 批准号:
23H03331 - 财政年份:2023
- 资助金额:
$ 12.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Precision Collider Phenomenology: OpenLoops BSM Extension
精密对撞机现象学:OpenLoops BSM 扩展
- 批准号:
2888853 - 财政年份:2023
- 资助金额:
$ 12.37万 - 项目类别:
Studentship
Lifespan extension, Somatotropic signaling and Tauopathy
寿命延长、促生长信号传导和 Tau 蛋白病
- 批准号:
10661340 - 财政年份:2023
- 资助金额:
$ 12.37万 - 项目类别:
Impact of Medicaid Postpartum Coverage Extension and Mandated Postpartum Depression Screening on Care for Gestational Diabetes and Pregnancy-Induced Hypertension
医疗补助产后覆盖范围扩大和强制性产后抑郁症筛查对妊娠期糖尿病和妊娠高血压综合征护理的影响
- 批准号:
10749378 - 财政年份:2023
- 资助金额:
$ 12.37万 - 项目类别:
Collaborative Research: The interplay of nitrogen loading and ecosystem sustainability in threatened wetlands: an extension of the WETFEET project
合作研究:受威胁湿地氮负荷与生态系统可持续性的相互作用:WEFTEET 项目的延伸
- 批准号:
2225001 - 财政年份:2023
- 资助金额:
$ 12.37万 - 项目类别:
Standard Grant
PFI (MCA): Self-Contained Soft Robotic Rehabilitation Device for Finger Extension Exercises
PFI (MCA):用于手指伸展练习的自给式软机器人康复装置
- 批准号:
2321454 - 财政年份:2023
- 资助金额:
$ 12.37万 - 项目类别:
Standard Grant