Information Retrieval for Large-scale Genomic Analysis

大规模基因组分析的信息检索

基本信息

  • 批准号:
    6359286
  • 负责人:
  • 金额:
    $ 13.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION: (provided by applicant) This project supports the continuation of the PI1's interdisciplinary training started in September 1999 with a Sloan/DOE fellowship in Computational Molecular Biology. The PI1's immediate career objective is to complete a transition into computational molecular biology by forging an independent research trajectory within this exciting field. University of Washington is a uniquely suitable place for making such a transition: it has several strong biology programs as well as a strong computer science department, with considerable synergy among them through active collaborations, joint courses, and seminars. The PI its a computer scientist by training, and based on initial investigations is convinced that her expertise in designing efficient algorithms can be gainfully employed to address challenging computational problems arising from the emergent need for global analysis of massive biological datasets, for example, the human genome. Her long term interest in this field, however, is fueled largely by the tantalizing vision of contributing to real biological knowledge. To realize this vision, she plans to acquire expertise in experimental techniques that will allow her to test biological hypotheses arising from computational analyses, through an extensive regimen of hands-on, lab-intensive coursework. The specific research problem the FLPI proposes to explore is to apply information retrieval techniques (which have been widely applied with great success in developing search engines for the world-wide web) for large-scale analysis of genomic sequence and gene expression data. She plans to build computational models of the untranslated promoter regions upstream of coexpressed eukaryotic genes, by identifying composite regulatory motifs that determine the genes' specific expression pattern. -Such composite motifs may be composed of the binding sites of several regulatory factors that coordinately control expression. These models are then to be used to classify promoter regions of unannotated genes, thereby providing a hypothesis for their function. This research has the potential to lead to novel computational methods for classification of eukaryotic promoter regions in particular, and for functional genomics in general. The intensive training afforded through the planned training activities and the proposed research will enable the PI1 to successfully complete the transition into being an independent investigator in computational molecular biology.
说明:(由申请人提供)本项目支持

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RIMLI SENGUPTA其他文献

RIMLI SENGUPTA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

PFI-TT: A Hybrid Scalable Data Management System Providing Deep Access to the Scientific Knowledge in Data Science
PFI-TT:混合可扩展数据管理系统,提供对数据科学中科学知识的深入访问
  • 批准号:
    2345794
  • 财政年份:
    2024
  • 资助金额:
    $ 13.59万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCF Core: Small: User-transparent Data Management for Persistence and Crash-consistency in Non-volatile Memories
协作研究:CCF 核心:小型:用户透明的数据管理,以实现非易失性存储器中的持久性和崩溃一致性
  • 批准号:
    2313146
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
    Standard Grant
EAGER: SMART-DMSP: Streamlining Metadata, Automation, and Research Tracking for Data Management and Sharing Plans
EAGER:SMART-DMSP:简化数据管理和共享计划的元数据、自动化和研究跟踪
  • 批准号:
    2332353
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
    Standard Grant
Decentralised Data Management for Edge Caching Systems in 5G
5G 边缘缓存系统的分散式数据管理
  • 批准号:
    LP210301393
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
    Linkage Projects
Data Management Core
数据管理核心
  • 批准号:
    10682165
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
Data Management and Bioinformatics
数据管理和生物信息学
  • 批准号:
    10633367
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
DATA MANAGEMENT FOR CANCER DIAGNOSIS PROGRAM ACTIVITIES
癌症诊断计划活动的数据管理
  • 批准号:
    10849595
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
Clinical Protocol and Data Management
临床方案和数据管理
  • 批准号:
    10625762
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
臨床試験におけるRisk-based Data Managementの実装
在临床试验中实施基于风险的数据管理
  • 批准号:
    23K17243
  • 财政年份:
    2023
  • 资助金额:
    $ 13.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了