New Machine Learning Architectures For Fast Data Selection
用于快速数据选择的新机器学习架构
基本信息
- 批准号:ST/X005089/1
- 负责人:
- 金额:$ 3.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Particle Physics experiments can have huge limitations to their Physics reach due to the sheer amount of data that is produced, and consequently how little they can store. In addition huge amounts of the data produced at a facility such as the LHC are intrinsically not as scientifically interesting as rare processes. In order to solve these challenges "Trigger" systems were developed to quickly scan data and identify potentially interesting signatures. These systems have to maintain a high efficiency for the processes of interest while also staying in the technical confines of the experiment such as latency - the time it takes for the algorithm to make its decision. Several technologies have been used in this endeavour such as FPGAs, CPUs, or GPUs at various stages of selection, with each of the solutions better suited to different tasks. However each of the solutions have their own limitations. The new Xilinx Versal platform aims to combine the benefits of CPUs, GPUs and FPGAs into a flexible platform for parallel processing. This architecture is particularly well suited to machine learning (ML) based algorithms and we propose to exploit our expertise in this area to evaluate these new platforms and gain a head-start in developing new ML architectures for future particle physics experiments
粒子物理学实验可能会对物理学范围产生巨大的限制,因为产生的数据量很大,因此它们可以存储的数据很少。此外,在大型强子对撞机这样的设施中产生的大量数据本质上并不像罕见的过程那样具有科学意义。为了解决这些挑战,开发了“触发”系统来快速扫描数据并识别潜在的感兴趣的签名。这些系统必须保持感兴趣的过程的高效率,同时也保持在实验的技术限制,如延迟-算法做出决定所需的时间。在这方面已经使用了几种技术,例如FPGA,CPU或GPU在不同的选择阶段,每种解决方案都更适合不同的任务。然而,每种解决方案都有其自身的局限性。新的Xilinx Versal平台旨在将CPU、GPU和FPGA的优势联合收割机结合到一个灵活的并行处理平台中。这种架构特别适合基于机器学习(ML)的算法,我们建议利用我们在这一领域的专业知识来评估这些新平台,并在为未来的粒子物理实验开发新的ML架构方面取得领先优势
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudarshan Paramesvaran其他文献
Sudarshan Paramesvaran的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
- 批准号:
24K17694 - 财政年份:2024
- 资助金额:
$ 3.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
$ 3.14万 - 项目类别:
Fellowship
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New fast beam loss monitor system for Diamon-ll and machine learning applications
适用于 Diamon-ll 和机器学习应用的新型快速光束损失监测系统
- 批准号:
2878859 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Studentship
SBIR Phase I: Proximate Wind Forecasts: A New Machine Learning Approach to Increasing Wind Energy Production
SBIR 第一阶段:风力预测:增加风能产量的新机器学习方法
- 批准号:
2309367 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
Magnetic Resonances in Nonlinear Dielectric Nanostructures: New Light-Matter Interactions and Machine Learning Enhanced Design
非线性介电纳米结构中的磁共振:新的光-物质相互作用和机器学习增强设计
- 批准号:
2240562 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
SBIR Phase I: Predictive Analytics and Machine Learning Modeling for New Patient Cancer Referrals
SBIR 第一阶段:针对新癌症患者转诊的预测分析和机器学习建模
- 批准号:
2304498 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
A New Machine Learning Framework for Single-Cell Multi-Omics Bioinformatics
单细胞多组学生物信息学的新机器学习框架
- 批准号:
2405416 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Standard Grant
Impact of oceanic mesoscale eddies on the productivity of the western Bay of Bengal: contribution of new EO data and machine learning
海洋中尺度涡旋对孟加拉湾西部生产力的影响:新的地球观测数据和机器学习的贡献
- 批准号:
2886218 - 财政年份:2023
- 资助金额:
$ 3.14万 - 项目类别:
Studentship