Simulating the Resilience of Transport Infrastructures Using QUANT

使用 QUANT 模拟交通基础设施的弹性

基本信息

  • 批准号:
    ST/Y003705/1
  • 负责人:
  • 金额:
    $ 6.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

We have developed a model that simulates the pattern of land use and transportation for Great Britain which is configured in terms of thousands of small zones and three modes of transport which bind together employment at place of work and population at place of residence. The model is called QUANT and it runs in a web-based environment. It is optimised to run very rapidly and deliver results to the user in a matter of minutes so that users can derive and test future scenarios for land use and transport, on-the-fly so-to-speak. Our preliminary explorations of the model using the DAFNI model platform suggest that we can adapt part of the model to this platform and this project presents a proof of concept that this is possible and useful. We will adapt the 'what-if' scenario capability of QUANT to the platform so that users can run thousands of scenarios whose data can be used to train various optimisation models that show how future plans for the location of land uses and transport can be massively improved. The model predicts the impacts of such scenarios and we will fashion various user environments around the use of DAFNI that enable stakeholders to test various plans and to demonstrate how AI techniques can be used to inform the generation of many scenarios. We will demonstrate how models such as these can be used effectively to generate the impacts of shocks to the land use transport system such as those posed by new infrastructure projects such as HS2 which are continually being evolved. The fact that our model deals with different transport networks for Great Britain enables us to trace the repercussions of land use and transport change across networks that are composed of thousands of nodes and links which is key to assessing the repercussions of major changes on the UK's urban system.
我们已经开发了一个模型,模拟了英国的土地利用和交通模式,该模式由数千个小区域和三种交通方式组成,这些交通方式将工作场所的就业和居住地的人口联系在一起。该模型被称为QUANT,它在基于Web的环境中运行。它经过优化,运行速度非常快,并在几分钟内向用户提供结果,以便用户可以推导和测试未来的土地使用和交通情况,可以说是在飞行中。我们使用DAFNI模型平台对模型进行的初步探索表明,我们可以将模型的一部分适应该平台,并且该项目提出了一个概念证明,这是可能的和有用的。我们将使QUANT的“假设”场景功能适应该平台,以便用户可以运行数千个场景,这些场景的数据可用于训练各种优化模型,这些模型显示未来土地使用和交通位置的规划如何得到大规模改善。该模型预测了这些场景的影响,我们将围绕DAFNI的使用设计各种用户环境,使利益相关者能够测试各种计划,并演示如何使用AI技术来生成许多场景。我们将展示如何有效地使用这些模型来产生对土地使用运输系统的冲击的影响,例如由新的基础设施项目(如HS2)所带来的冲击,这些项目正在不断发展。事实上,我们的模型处理不同的交通网络,为英国使我们能够跟踪的影响,土地利用和交通变化的网络,由数千个节点和链接,这是关键,以评估英国的城市系统的重大变化的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Milton其他文献

Exascale Agent-Based Modelling for Policy Evaluation in Real-Time (ExAMPLER) (Short Paper)
基于百亿亿级代理的实时政策评估建模 (ExAMPLER)(短论文)
  • DOI:
    10.4230/lipics.giscience.2023.38
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alison J. Heppenstall;J. Gareth Polhill;Michael Batty;Matthew P. Hare;Doug Salt;Richard Milton
  • 通讯作者:
    Richard Milton
Exode: Humanoid Healthcare Robot
Exode:人形医疗机器人
Internet of Things of Trees - Conversational Objects via SMS Protocols
树木物联网 - 通过 SMS 协议的对话对象
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. D. Jode;Leah Lovett;D. Hay;A. Hudson;Richard Milton;Lucy Fraser
  • 通讯作者:
    Lucy Fraser
A land-use transport-interaction framework for large scale strategic urban modeling
用于大规模战略城市建模的土地利用交通交互框架
Geospatial computing : architectures and algorithms for mapping applications
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Milton
  • 通讯作者:
    Richard Milton

Richard Milton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Studentship
Increasing farming competitiveness, profitability and resilience by removal of greenhouse gases (R-LEAF): follow-on funding
通过消除温室气体提高农业竞争力、盈利能力和复原力 (R-LEAF):后续资金
  • 批准号:
    10090632
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Collaborative R&D
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
  • 批准号:
    AH/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Research Grant
Coastal TALES, Telling Adaptation: Living Environmental Stories for Coastal Resilience
沿海故事,讲述适应:沿海恢复力的生活环境故事
  • 批准号:
    AH/Z000033/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Research Grant
Improving Resilience of MCDI for Water Supply in Remote Communities
提高偏远社区供水的 MCDI 弹性
  • 批准号:
    DP240101469
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Discovery Projects
Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
  • 批准号:
    MR/Z503514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Research Grant
Collaborative Research: Concurrent Design Integration of Products and Remanufacturing Processes for Sustainability and Life Cycle Resilience
协作研究:产品和再制造流程的并行设计集成,以实现可持续性和生命周期弹性
  • 批准号:
    2348641
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
CAREER: Stochasticity and Resilience in Reinforcement Learning: From Single to Multiple Agents
职业:强化学习中的随机性和弹性:从单个智能体到多个智能体
  • 批准号:
    2339794
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Place-Based, Human-Centered Networks to Enhance Community Resilience and Equity
以地方为基础、以人为本的网络,以增强社区的弹性和公平性
  • 批准号:
    2242719
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Glacier resilience during the Holocene and late Pleistocene in northern California
合作研究:RUI:北加州全新世和晚更新世期间的冰川恢复力
  • 批准号:
    2303409
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了