Perceptual Organization of Two Dimensional Patterns
二维图案的感知组织
基本信息
- 批准号:6334035
- 负责人:
- 金额:$ 25.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:behavioral /social science research tag brightness discrimination computational neuroscience form /pattern perception human subject mathematical model motion perception neural information processing neurophysiology psychophysics space perception statistics /biometry vision visual perception visual stimulus
项目摘要
The power and versatility of the human visual system derives in large part from its amazing ability to find structure and organization in the images encoded by the retinas. To discover and describe structure, the visual system uses a wide array of perceptual grouping/segregation mechanisms. This sophisticated array of mechanisms is absolutely essential for human ability to recognize objects and correctly interpret visual scenes. During the previous funding period, we have taken a systematic quantitative approach to the study of the perceptual grouping mechanisms. We propose to continue and extend our general approach, which consists of three major parts: (1) measuring the statistical properties of the visual images that are relevant for perceptual grouping, (2) developing models of perceptual grouping that are informed by the statistical properties of visual images, by the physiology and psychophysics of low-level vision, and by computational principles, and (3) testing the predictions of these models and competing models in psychophysical experiments. We propose two methods for measuring image statistics. One method is to extract local features from images and then compute simple co- occurrence statistics; e.g., the joint probabilities of all possible geometrical relationships between pairs of local edge elements extracted from representative collections of natural images. The other method is to extract local features from images and then use an image- tracing procedure to measure the Bayesian co-occurrence statistics; e.g., the likelihood that any given pair of edge elements belong to the same physical contour versus different physical contours. Most of the proposed modeling and psychophysical work will focus on the mechanisms of contour grouping and motion grouping. The contour grouping experiments are directed at testing and extending our successful model of contour grouping based upon natural image statistics. The motion grouping experiments will examine the role of motion information in contour grouping and role of spatial information in motion grouping. We also plan to test motion-grouping models that we will develop from measurements of natural video image statistics.
人类视觉系统的力量和多功能性在很大程度上源于它在视网膜编码的图像中发现结构和组织的惊人能力。为了发现和描述结构,视觉系统使用了大量的感知分组/分离机制。这种复杂的机制对于人类识别物体和正确解释视觉场景的能力至关重要。在上一个资助期间,我们采取了系统的定量方法来研究感知分组机制。我们建议继续并扩大我们的一般做法,其中包括三个主要部分:(1)测量与感知分组相关的视觉图像的统计特性,(2)开发感知分组的模型,该模型由视觉图像的统计特性、低级视觉的生理学和心理物理学以及计算原理提供信息,以及(3)在心理物理实验中检验这些模型和竞争模型的预测。我们提出了两种方法来测量图像统计。一种方法是从图像中提取局部特征,然后计算简单的共现统计;例如,从自然图像的代表性集合中提取的局部边缘元素对之间的所有可能的几何关系的联合概率。另一种方法是从图像中提取局部特征,然后使用图像跟踪过程来测量贝叶斯同现统计;例如,任何给定的边缘元素对属于相同的物理轮廓与不同的物理轮廓的可能性。大部分的建模和心理物理学工作将集中在轮廓分组和运动分组的机制。轮廓分组实验的目的是测试和扩展我们成功的模型的轮廓分组的基础上自然图像统计。运动分组实验将检查运动信息在轮廓分组中的作用和空间信息在运动分组中的作用。我们还计划测试我们将从自然视频图像统计数据的测量中开发的运动分组模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WILSON S GEISLER其他文献
WILSON S GEISLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WILSON S GEISLER', 18)}}的其他基金
An optical-genetic toolbox for reading and writing neural population codes in functional maps
用于在功能图中读取和写入神经群体代码的光学遗传工具箱
- 批准号:
9355717 - 财政年份:2016
- 资助金额:
$ 25.62万 - 项目类别:
PERCEPTUAL ORGANIZATION OF TWO DIMENSIONAL PATTERNS
二维图案的感知组织
- 批准号:
2711211 - 财政年份:1997
- 资助金额:
$ 25.62万 - 项目类别:
Perceptual Organization of Two Dimensional Patterns
二维图案的感知组织
- 批准号:
6895745 - 财政年份:1997
- 资助金额:
$ 25.62万 - 项目类别: