NEURAL CORRELATES OF MOVING BOUNDARY PERCEPTION
移动边界感知的神经关联
基本信息
- 批准号:6392034
- 负责人:
- 金额:$ 14.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-09-01 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION: (Adapted from the Investigator's Abstract)
The ability to perceive the sharpness of abject boundaries is central to the
quality of vision yet very little is know about the underlying neural
mechanisms. The broad long-term objective of this research proposal is to reach
a more profound understanding of neural mechanisms that determine the perceived
form of moving objects in human vision. Under normal viewing conditions, moving
objects appear much less blurred than what one would predict from the long
duration of visual persistence. This phenomenon is known as motion deblurring.
A specific goal of this research is to study the mechanisms underlying motion
deblurring and their implications for the perceived form of moving objects. The
approach will combine computational and psychophysical methods to test the
mechanisms proposed in a neural network model of retino-cortical dynamics. The
model leads to the following specific hypotheses:
Hypothesis 1 (spatio-temporal profiles): (i) The metacontrast masking function
for spatially localized stimuli is oscillatory; (ii) these oscillations are a
by-product of the retino-cortical system that occur when it is driven
externally by high luminance inputs or internally by focused-arousal/attention;
and (iii) the smooth character of the "classical" metacontrast
function-extensively reported in the literature-results from spatio-temporal
averaging in the post-retinal network.
Hypothesis 2 (spatial extent of motion blur): The primary mechanism that
determines the length of perceived smear for moving targets is an inhibition
from transient cells to sustained cells.
Hypothesis 3 (perceived form of motion blur): The brightness profile produced
by the retino-cortical dynamics model in response to an isolated moving target
will match the psychophysically measured brightness profile of the phenomenon
known as "Charpentier's bands."
描述:(改编自研究者的摘要)
感知卑微边界的清晰度的能力对于
视觉质量,但对潜在的神经系统知之甚少
机制。本研究计划的广泛长期目标是实现
对决定感知的神经机制有更深刻的理解
人类视觉中运动物体的形式。在正常观看条件下,移动
物体看起来比人们从长期观察中预测的要模糊得多
视觉暂留的持续时间。这种现象称为运动去模糊。
这项研究的一个具体目标是研究运动背后的机制
去模糊及其对移动物体感知形式的影响。这
方法将结合计算和心理物理学方法来测试
视网膜皮质动力学神经网络模型中提出的机制。这
模型得出以下具体假设:
假设 1(时空剖面): (i) 元对比掩蔽函数
对于空间局部的刺激是振荡的; (ii) 这些振荡是
视网膜皮质系统被驱动时产生的副产品
外部通过高亮度输入或内部通过集中唤醒/注意力;
(iii)“经典”元对比的平滑特征
功能-文献中广泛报道-时空结果
在视网膜后网络中进行平均。
假设 2(运动模糊的空间范围):主要机制
确定移动目标的感知拖尾长度是一种抑制
从瞬时细胞到持续细胞。
假设 3(运动模糊的感知形式):产生的亮度分布
通过视网膜皮质动力学模型响应孤立的移动目标
将与心理物理学测量的现象的亮度轮廓相匹配
被称为“夏彭蒂耶乐队”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HALUK OGMEN其他文献
HALUK OGMEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HALUK OGMEN', 18)}}的其他基金
Non-retinotopic Mechanisms of Dynamic Form Perception in Human Vision
人类视觉动态形式感知的非视网膜专题机制
- 批准号:
7466078 - 财政年份:2009
- 资助金额:
$ 14.75万 - 项目类别:
Non-retinotopic Mechanisms of Dynamic Form Perception in Human Vision
人类视觉动态形式感知的非视网膜专题机制
- 批准号:
7895582 - 财政年份:2009
- 资助金额:
$ 14.75万 - 项目类别:
相似海外基金
A biologically-inspired, interactive digital device to introduce K12 students to computational neuroscience
一种受生物学启发的交互式数字设备,可向 K12 学生介绍计算神经科学
- 批准号:
10706026 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
- 批准号:
10746499 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
International Conference on Cognitive Computational Neuroscience, 2023
认知计算神经科学国际会议,2023
- 批准号:
BB/X018350/1 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Research Grant
Undergraduate and Graduate Training in Computational Neuroscience and Data Analysis
计算神经科学和数据分析的本科生和研究生培训
- 批准号:
10879351 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Interdisciplinary Training in Computational Neuroscience
计算神经科学跨学科培训
- 批准号:
10879289 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Undergraduate and Graduate Training in Computational Neuroscience and Data Analysis
计算神经科学和数据分析的本科生和研究生培训
- 批准号:
10746527 - 财政年份:2023
- 资助金额:
$ 14.75万 - 项目类别:
Computational Neuroscience
计算神经科学
- 批准号:
CRC-2018-00162 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Canada Research Chairs
2022 Collaborative Research in Computational Neuroscience (CRCNS) Principal Investigators Meeting
2022年计算神经科学合作研究(CRCNS)首席研究员会议
- 批准号:
2236749 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Standard Grant
Decoding sleeping brain activity: Integrating experiments and computational neuroscience to elucidate the cognitive benefit of sleep
解码睡眠大脑活动:结合实验和计算神经科学来阐明睡眠的认知益处
- 批准号:
RGPIN-2020-06342 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Discovery Grants Program - Individual
Computational Neuroscience and Cognitive Neuroimaging
计算神经科学和认知神经影像
- 批准号:
CRC-2018-00174 - 财政年份:2022
- 资助金额:
$ 14.75万 - 项目类别:
Canada Research Chairs














{{item.name}}会员




