On the Hasse principle for complete intersection varieties
完全交叉品种的哈斯原理
基本信息
- 批准号:1769648
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In 1961, Birch used a general version of the Hardy-Littlewood circle method to verify the Hasse principle for systems of forms of all degrees, provided that these forms had sufficiently many variables (this depends both on the degree, and the number of forms). There have been many developments in this area since then which have led to a significant reduction in the number of variables required to verify the Hasse principle in specific cases, however none of these results have been applicable to systems of two cubic forms. We aim to improve on Birch's result for two cubic forms which states that the Hasse principle is true provided that the forms are in at least 50+phi variables, where phi is the dimension of the singular locus of the intersection variety of the two forms.We firstly aim to develop a two-dimensional version of the averaged Van-der Corput differencing method, and then use this to find a better bound for the minor arcs by taking advantage of the extra saving gained by averaging over both integrals. We will then perform Weyl differencing to get an explicit bound for the exponential sums which appear in the minor arcs. This will enable us to save 6 or 7 variables over Birch's method.After this, we will adapt the Van-der Corput differencing step further to get partial Kloosterman refinement in the a sum. In order to take advantage of this, we will then use Poisson summation instead of Weyl differencing. We will need to adapt and improve upon current state of the art techniques in order to prove that square-root cancellation occurs in the exponential sums which arise in the minor arcs. This will hopefully enable us to save an additional 3-5 variables.Finally, we aim to incorporate a version of the circle method which uses larger intervals as building blocks for the minor arcs, in order to get further saving over the a sum and potentially save another variable.
1961年,Birch使用Hardy-Littlewood圆方法的通用版本来验证所有阶形式系统的哈斯原理,前提是这些形式具有足够多的变量(这取决于阶数和形式的数量)。此后该领域取得了许多进展,导致在特定情况下验证哈斯原理所需的变量数量显着减少,但这些结果均不适用于两种三次形式的系统。我们的目标是改进两种三次形式的 Birch 结果,该结果指出,只要形式至少有 50+phi 变量,哈斯原理就成立,其中 phi 是两种形式的交集奇异轨迹的维数。我们首先旨在开发平均 Van-der Corput 差分方法的二维版本,然后利用它所获得的额外节省,使用它来找到更好的短弧界限。 两个积分的平均值。然后,我们将执行 Weyl 差分,以获得小弧中出现的指数和的显式界限。这将使我们能够比 Birch 的方法节省 6 或 7 个变量。此后,我们将进一步调整 Van-der Corput 差分步骤,以在总和中获得部分 Kloosterman 细化。为了利用这一点,我们将使用泊松求和而不是韦尔差分。我们需要适应和改进当前最先进的技术,以证明平方根抵消发生在小弧中出现的指数和中。这有望使我们能够节省额外的 3-5 个变量。最后,我们的目标是合并一个圆方法的版本,该方法使用较大的间隔作为小弧的构建块,以便进一步节省总和并可能节省另一个变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
- 批准号:
24K04051 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The research on thermal conductivities of one-dimensional van der Waals heterostructures
一维范德华异质结构的热导率研究
- 批准号:
22KJ0648 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Scientific principle construction of two-dimensional liquid with broken inversion symmetry
反演对称性破缺二维液体的科学原理构建
- 批准号:
23K17366 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
- 批准号:
23K17776 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Fault Principle: Foundations and Content
过错原则:基础和内容
- 批准号:
23KJ1551 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Study for reformation of the hearsay exceptions based on the best evidence principle
基于最佳证据原则的传闻证据例外改革研究
- 批准号:
23K01149 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the computational principle of visual objects
理解视觉对象的计算原理
- 批准号:
23H03698 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
The principle of rapid cooling - What determines the quenching?
快速冷却的原理——什么决定了淬火?
- 批准号:
23H01357 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
- 批准号:
2247709 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




