Bridging Computer Science with Neuroscience towards a new understanding of reasoning
将计算机科学与神经科学联系起来,以获得对推理的新理解
基本信息
- 批准号:1778161
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This PhD research project aims to bridge automated reasoning and neuroscience to shed light on designing more human-like computing system. Traditional machine reasoning, usually designed to follow a set of pre-defined logical rules, performs well for logical symbolic reasoning such as mathematical theorem proving. However, such symbolic logic rule based systems are often not able to deal with reasoning tasks that contain multi-modal heterogeneous information (including visual, audial information, etc.). Human brains, on the other hand, are very efficient at reasoning with such informal, heterogeneous and approximate reasoning tasks. By studying brain neural-activities when people are actively reasoning about a task, we can gain a deeper understanding of the nature of human reasoning, and develop systems that emulate such reasoning processes.Many researches have been developing machine learning models such as Artificial Neural Networks (ANN) and Hierarchical Hidden Markov Models that emulate the functioning of the brain. One particular type of ANN, the Convolutional Neural Network (CNN), has been particularly successful recently in image processing and speech recognition tasks. CNN is inspired in studying the neural structures of the visual cortex. CNN has become popular recently because of improvement in parallel and distributed computing technology, mainly the GPU parallel computing technology. Parallel computing allows much deeper neural networks to be trained in feasible time. Researches have simulating human visual cortex in tasks of object recognition with CNN. However, little research has been done on emulating the reasoning engine, the pre-frontal cortex (PFC). This project aims to study neural activities in PFC while people are undertaking reasoning, and shed light on developing a new type of artificial neural system for automated reasoning.There are many types of reasoning, such as verbal reasoning, visual (diagrammatic) reasoning and symbolic reasoning. Different types of reasoning activate PFC and specific somatosensory cortex together. For example, PFC and visual cortex are activated in the process of creating mental models for visual relations. Visual reasoning is the most common type of reasoning in mammals with neo-cortex. Visual reasoning is arguably more primary in an evolutional sense than other types of reasoning. Moreover visual reasoning has been widely studied in the neuroscience community. Therefore, in this project I plan to conduct research into visual reasoning in the first phase, and then extend to other types of reasoning. Functional Magnetic Resonance Imaging (fMRI) allows us to monitor neural activities inside the brain by measuring Blood Oxygen Level Dependent (BOLD) response. Higher level of neural activities in certain area of the brain corresponds to increased level of blood oxygen consumption in that area. With fMRI we can monitor patterns of neural activations inside PFC of people undertaking reasoning tasks. These patterns of neural activations can then be analyzed to shed light on the neural computational processes of reasoning tasks. With knowledge of the neural computational processes, we can modify existing neural networks (such as Deep Belief Network, Recurrent Neural Network, and Convolutional Neural Network) to allow better mapping on to the neural circuitries inside PFC, or propose new types of neural computational models that more accurately captures the neural processes. We can also use these insights to guide automated reasoning systems' reasoning processes in the form of heuristics - these would reflect human reasoning more, as well as make automated systems more human-like and thus accessible.
这个博士研究项目旨在弥合自动推理和神经科学,以揭示设计更人性化的计算系统。传统的机器推理通常被设计为遵循一组预定义的逻辑规则,对于逻辑符号推理(如数学定理证明)表现良好。然而,这种基于符号逻辑规则的系统往往不能处理包含多模态异构信息(包括视觉,听觉信息等)的推理任务。另一方面,人类的大脑在进行这种非正式的、异质的和近似的推理任务时非常有效。通过研究人在主动推理时的脑神经活动,我们可以更深入地了解人类推理的本质,并开发模拟这种推理过程的系统。许多研究一直在开发模拟大脑功能的机器学习模型,如人工神经网络(ANN)和分层隐马尔可夫模型。一种特殊类型的ANN,卷积神经网络(CNN),最近在图像处理和语音识别任务中特别成功。CNN的灵感来自于研究视觉皮层的神经结构。近年来,随着并行和分布式计算技术的发展,尤其是GPU并行计算技术的发展,CNN成为一种新兴的计算技术。并行计算允许在可行的时间内训练更深的神经网络。已有研究用CNN模拟人类视觉皮层的物体识别任务。然而,很少有研究已经做了模拟的推理引擎,前额叶皮层(PFC)。本项目旨在研究人在进行推理时前额叶皮层的神经活动,为开发一种新型的人工神经系统提供指导。推理有多种类型,如语言推理、视觉(图解)推理和符号推理。不同类型的推理同时激活PFC和特定的躯体感觉皮层。例如,PFC和视觉皮层在创建视觉关系的心理模型的过程中被激活。视觉推理是具有新皮层的哺乳动物中最常见的推理类型。视觉推理在进化的意义上比其他类型的推理更重要。此外,视觉推理在神经科学界也得到了广泛的研究。因此,在这个项目中,我计划在第一阶段对视觉推理进行研究,然后扩展到其他类型的推理。功能性磁共振成像(fMRI)允许我们通过测量血氧水平依赖(BOLD)反应来监测大脑内的神经活动。大脑某些区域的神经活动水平越高,该区域的血氧消耗水平就越高。通过功能磁共振成像,我们可以监测人们在执行推理任务时前额叶皮层内的神经激活模式。然后,可以分析这些神经激活模式,以揭示推理任务的神经计算过程。有了神经计算过程的知识,我们可以修改现有的神经网络(如深度信念网络,递归神经网络和卷积神经网络),以便更好地映射到PFC内部的神经电路,或者提出更准确地捕获神经过程的新型神经计算模型。我们还可以使用这些见解来指导自动推理系统的推理过程,这将更多地反映人类的推理,并使自动系统更像人类,从而更容易访问。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
X-CNN: Cross-modal convolutional neural networks for sparse datasets
- DOI:10.1109/ssci.2016.7849978
- 发表时间:2016-10
- 期刊:
- 影响因子:0
- 作者:Petar Velickovic;Duo Wang;N. Lane;P. Lio’
- 通讯作者:Petar Velickovic;Duo Wang;N. Lane;P. Lio’
Unsupervised and Interpretable Scene Discovery with Discrete-Attend-Infer-Repeat
通过离散参与推断重复进行无监督且可解释的场景发现
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:D.Wang
- 通讯作者:D.Wang
Conference Paper
- DOI:10.1016/s0987-7983(98)80087-x
- 发表时间:2009
- 期刊:
- 影响因子:0
- 作者:Peter Chan
- 通讯作者:Peter Chan
Abstract Diagrammatic Reasoning with Multiplex Graph Networks
- DOI:
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Duo Wang;M. Jamnik;P. Lio’
- 通讯作者:Duo Wang;M. Jamnik;P. Lio’
Unsupervised Extraction of Interpretable Graph Representations From Multiple-object Scenes
从多对象场景中无监督地提取可解释的图形表示
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:D.Wang
- 通讯作者:D.Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于多重计算全息片(Computer-generated Hologram,CGH)的光学非球面干涉绝对检验方法研究
- 批准号:62375132
- 批准年份:2023
- 资助金额:54.00 万元
- 项目类别:面上项目
Journal of Computer Science and Technology
- 批准号:61224001
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Journal of Computer Science and Technology
- 批准号:61040017
- 批准年份:2010
- 资助金额:4.0 万元
- 项目类别:专项基金项目
相似海外基金
Creating a Path to Achieving Success and Sense of Belonging in Computer Science
创造一条在计算机科学领域取得成功和归属感的道路
- 批准号:
2322665 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Developing and Testing Innovations: Computer Science Through Engineering Design in New York
开发和测试创新:纽约的工程设计中的计算机科学
- 批准号:
2341962 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
2024 - 2025 National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Research Experiences for Undergraduates (REU) Principal Investigator Workshops
2024 - 2025 美国国家科学基金会 (NSF) 计算机与信息科学与工程 (CISE) 本科生研究经验 (REU) 首席研究员研讨会
- 批准号:
2407231 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Artificial Intelligence Summer School for Computer Science and Operations Research Education; College Park, Maryland; 19-24 May 2024
会议:计算机科学和运筹学教育人工智能暑期学校;
- 批准号:
2408982 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414606 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Supporting Elementary Students’ Computer Science Skills and Interest through Engagement with Low-cost, Adaptable Robots
通过与低成本、适应性强的机器人互动来支持小学生的计算机科学技能和兴趣
- 批准号:
2342489 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Designing and Studying Collaborative Coding Experiences for Middle School Computer Science Education
设计和研究中学计算机科学教育的协作编码体验
- 批准号:
2342632 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Creating a Grow-Your-Own Program for Recruiting and Supporting Computer Science Teacher Candidates in Rural Georgia
创建一个自己成长的计划,用于招募和支持佐治亚州农村地区的计算机科学教师候选人
- 批准号:
2344678 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant