Hard Graph Problems - Theory and in Practice

硬图问题 - 理论与实践

基本信息

  • 批准号:
    1804156
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

SUMMARY: We will study the maximum weight clique and maximum edge weight clique problems, developing new algorithms, compiling a set of realistic benchmark instances which researchers can use to compare algorithms, and analysing the search tree explored by algorithms to better understand how they work in practice and how they may be improved.CONTEXT: Graphs---collections of nodes, with edges between some pairs of nodes---are a fundamental mathematical object. The maximum clique problem is the task of finding, for a given graph, as large a set of nodes as possible such that each pair of nodes in the set are joined by an edge. In the context of a social network, we can view this as the problem of finding as large a group of mutual friends as possible. This, and related problems, have a wide range of practical applications in fields such as biology and computer vision.AIMS & OBJECTIVES: Our project will study two generalisations of the maximum clique problem. In the first of these, maximum weight clique (MWC), each node has a weight and we seek to find a group of pairwise-adjacent vertices with as high a total weight as possible. This is a well known problem with applications including the winner determination problem in combinatorial auctions (in which participants bid on bundles, rather than individual items). The second problem we will consider is maximum edge weight clique (MEWC), in which each edge has a weight. We will develop and implement new algorithms to solve these problems. We will explore encodings of the problems that can be solved directly by existing general-purpose solvers, and also develop new customised algorithms for the problems. We will develop both exact algorithms, which are guaranteed to find an optimal solution, and heuristic algorithms which do not always find an optimal solution but may find a good solution much more quickly in practice.We also investigate kernalisations, where a problem is pre-processed and compressed (and expanded once solved), and filtering steps (to remove redundant vertices and edges) that can be applied as a pre-process or within search.We will perform empirical studies to understand problem features that influence the performance of algorithms. We will also examine the search tree that is explored by each algorithm, to better understand its behaviour and to seek ways to reduce the amount of work that must be carried out to find a solution.We will develop theory to explain why some problem instances are hard and others are easy. This theory will be tested empirically and used to guide the engineering of new algorithms and heuristics.A weakness of the existing literature on MWC is that the benchmark instances used to compare the performance of algorithms are generated in a very artificial way, and bear little resemblance to real-world problems. We will compile a benchmark set of more realistic instances. This will be of use to us in our experiments, and will be a valuable resource for other researchers investigating this and related problems.APPLICATIONS: We will explore new applications of MWC and MEWC. As one concrete example, we will use MWC to find the optimal solution to the kidney exchange problem---a problem which is already used in practice by the NHS to assign living organ donors to patients. We believe that MWC algorithms will be an effective and simple technique for solving the kidney exchange problem, and could be combined with existing techniques to enable kidney-exchange algorithms to scale to international schemes which are likely to exist in the near future.We will develop software that encodes binary constraint satisfaction problems (CSPs)---a very general class of problem---as MWC, and will therefore be able to use MWC solvers to solve many types of practical problems such as scheduling and vehicle routing. We will compare the performance of this solution technique with existing CSP solvers.
总结:我们将研究最大权团和最大边权团问题,开发新的算法,编译一组研究人员可以用来比较算法的现实基准实例,并分析算法探索的搜索树,以更好地了解它们在实践中如何工作以及如何改进。图--节点的集合,在一些节点对之间有边--是一个基本的数学对象。最大团问题的任务是找到,对于一个给定的图,尽可能大的一组节点,使每对节点在集合中加入一个边缘。在社交网络的背景下,我们可以将其视为找到尽可能多的共同朋友的问题。这一点,以及相关的问题,有广泛的实际应用领域,如生物学和计算机view.AIMS和提示:我们的项目将研究最大团问题的两个概括。在第一种情况下,最大权重团(MWC),每个节点都有一个权重,我们试图找到一组具有尽可能高的总权重的成对相邻顶点。这是一个众所周知的问题,包括在组合拍卖(其中参与者出价捆绑,而不是个别项目)的赢家确定问题的应用程序。我们将考虑的第二个问题是最大边权重团(MEWC),其中每条边都有权重。我们将开发和实施新的算法来解决这些问题。我们将探索编码的问题,可以直接解决现有的通用求解器,也开发新的定制算法的问题。我们将开发精确算法和启发式算法,精确算法保证找到最优解,启发式算法并不总是找到最优解,但在实践中可能会更快地找到一个好的解决方案。(并在解决后扩大),和过滤步骤(以删除冗余的顶点和边),可以应用为预-我们将进行实证研究,以了解影响算法性能的问题特征。我们还将检查每个算法探索的搜索树,以更好地了解其行为,并寻求减少必须执行的工作量的方法来找到解决方案。我们将开发理论来解释为什么有些问题实例很难,而其他的很容易。这一理论将被实证检验,并用于指导新算法和算法的工程化。现有MWC文献的一个弱点是用于比较算法性能的基准实例是以非常人工的方式生成的,与现实世界的问题几乎没有相似之处。我们将编译一组更现实的实例的基准。这将是我们在我们的实验中使用,并将是一个宝贵的资源,为其他研究人员调查这一点和相关problems. APPLICATIONS:我们将探索MWC和MEWC的新应用。作为一个具体的例子,我们将使用MWC来找到肾脏交换问题的最佳解决方案-这个问题已经被NHS在实践中用于为患者分配活体器官捐赠者。我们相信MWC算法将是解决肾脏交换问题的一种有效而简单的技术,并且可以与现有技术相结合,使肾脏交换算法能够扩展到可能在不久的将来存在的国际方案。我们将开发软件,将二进制约束满足问题(CSP)编码为MWC,因此,将能够使用MWC求解器来解决许多类型的实际问题,如调度和车辆路径。我们将比较这种解决方案的技术与现有的CSP求解器的性能。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Algorithm for the Exact Treedepth Problem
精确树深度问题的算法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trimble J
  • 通讯作者:
    Trimble J
When Subgraph Isomorphism is Really Hard, and Why This Matters for Graph Databases
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于Graph-PINN的层结稳定度参数化建模与沙尘跨介质耦合传输模拟研
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平面三角剖分flip graph的强凸性研究
  • 批准号:
    12301432
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于graph的多对比度磁共振图像重建方法
  • 批准号:
    61901188
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
基于de bruijn graph梳理的宏基因组拼接算法开发
  • 批准号:
    61771009
  • 批准年份:
    2017
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于Graph和ISA的红外目标分割与识别方法研究
  • 批准号:
    61101246
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
中国Web Graph的挖掘与应用研究
  • 批准号:
    60473122
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Approximation algorithms for NP-hard graph connectivity problems
NP 难图连通性问题的近似算法
  • 批准号:
    509110-2017
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Algorithms for hard graph problems based on auxiliary data
基于辅助数据的硬图问题算法
  • 批准号:
    FT140100048
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Algorithmic approaches to hard geometric and graph theoretic problems
困难几何和图论问题的算法方法
  • 批准号:
    259-2009
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic approaches to hard geometric and graph theoretic problems
困难几何和图论问题的算法方法
  • 批准号:
    259-2009
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic approaches to hard geometric and graph theoretic problems
困难几何和图论问题的算法方法
  • 批准号:
    259-2009
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic approaches to hard geometric and graph theoretic problems
困难几何和图论问题的算法方法
  • 批准号:
    259-2009
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic approaches to hard geometric and graph theoretic problems
困难几何和图论问题的算法方法
  • 批准号:
    259-2009
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic approaches to hard geometric and graph theoretic problems
困难几何和图论问题的算法方法
  • 批准号:
    259-2004
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic approaches to hard geometric and graph theoretic problems
困难几何和图论问题的算法方法
  • 批准号:
    259-2004
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic approaches to hard geometric and graph theoretic problems
困难几何和图论问题的算法方法
  • 批准号:
    259-2004
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了