Categorical Combinatorics for Proof Theory and Programming Languages.
证明理论和编程语言的分类组合。
基本信息
- 批准号:1894512
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A long standing problem is to understand semantic models for computer programs, and for mathematical proofs. This is a theoretical problem, spanning the nature of computation, of terminating programs, and convergence, but it has applications as it suggests new ways of using programming languages, new ways of optimizing programs (replacing a program with a semantically identical but faster version), and new ways of verifying program correctness. The research will be published in competitive conferences and journals. The main aim is to develop a theory of the role that multicategories and enriched categories can play in generalized versions of linear logic. Linearity is crucial in programming languages because it constrains how resources are used. Resources might be memory pointers in conventional programming, or qubits in quantum computing. Categories are a way of giving a theory of equality that is compositional. Theories of equality are important philosophically. But they are also important in practice, for example, they form the basis of optimizing compiler transformations, such as type-directed-partial-evaluation, which make programs run faster. Compositionality is important because it means we can understand a whole program in terms of its parts; again, this is important philosophically, but also in practice, as it allows a compiler to optimize parts of the program. A secondary aim is to explore concrete and computational formalizations of these semantic structures, in the spirit of the Agda type system, and ongoing 'cubical' extensions of Agda, the Prover9 equational logic prover, and the Globular graphical proof assistant. The methodology is novel because it builds on recent developments by S Staton and collaborators on categorical models of quantum programming languages using enriched categories and enrichment in combinatorial species (published in MFPS 2017, POPL 2015); on premulticategories and effects (POPL 2013); and possibly on recent work on effect algebras in quantum logic and their relation to presheaf categories (ICALP 2015). The researcher, Dario Stein, is ideally placed to do this work, because he has taken courses on category theory, quantum computation, combinatorics, algebraic geometry, set theory, logic and decidability in groups, and written a dissertation on locally presentable and accessible categories, as part of his Masters in Mathematics at Cambridge. He is also familiar with more practical aspects of the project, including functional languages (F# and Haskell) and tools (Prover9).
一个长期存在的问题是理解计算机程序和数学证明的语义模型。这是一个理论问题,跨越了计算、终止程序和收敛的本质,但它也有应用,因为它提出了使用编程语言的新方法、优化程序的新方法(用语义相同但更快的版本替换程序)和验证程序正确性的新方法。这项研究将在竞争性会议和期刊上发表。主要目的是发展一种理论,说明多范畴和丰富范畴在线性逻辑的广义版本中可以发挥的作用。线性在编程语言中至关重要,因为它限制了资源的使用方式。资源可能是传统编程中的内存指针,也可能是量子计算中的量子比特。范畴是一种给予平等理论的方式,这种理论是构成的。平等论在哲学上很重要。但它们在实践中也很重要,例如,它们构成了优化编译器转换的基础,例如类型定向部分求值,这些转换使程序运行得更快。组合性很重要,因为它意味着我们可以理解整个程序的各个部分;同样,这在哲学上很重要,但在实践中也很重要,因为它允许编译器优化程序的各个部分。第二个目标是在AGDA类型系统的精神下,探索这些语义结构的具体和计算形式化,以及正在进行的AGDA、Prover9等式逻辑证明器和球状图形证明助手的立方扩展。这种方法是新颖的,因为它建立在S·斯塔顿和他的合作者最近的发展基础上,即使用丰富的范畴和组合物种的丰富的量子编程语言的范畴模型(发表在MFPS 2017上,POPL2015);关于前多范畴和效应(POPL2013);以及可能建立在量子逻辑中的效应代数及其与前堆范畴的关系(ICALP 2015)的最新工作的基础上。这位名叫达里奥·斯坦(Dario Stein)的研究人员非常适合做这项工作,因为他在剑桥大学的数学硕士学位课程中,曾选修过范畴理论、量子计算、组合学、代数几何、集合论、逻辑和群组可判断性等课程,并撰写了一篇关于局部可表示和可达范畴的论文。他还熟悉该项目的更多实用方面,包括函数式语言(F#和Haskell)和工具(Prover9)。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Beta-Bernoulli process and algebraic effects
Beta-伯努利过程和代数效应
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Staton S
- 通讯作者:Staton S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
- 批准号:
2401464 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
- 批准号:
2349015 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
- 批准号:
2418414 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
- 批准号:
2415358 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
- 批准号:
2348525 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




