Quantum advantage in categories of relational structures
关系结构类别中的量子优势
基本信息
- 批准号:1893567
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project falls within EPSRC theoretical computer science research area.Given two model-theoretic relational structures (both using the same underlying language), consider the following game played between two players: two elements, a and b, are chosen at random from the first structure, then, without sharing information, Player 1 and Player 2 select elements A and B from the second structure. The players win if for every relation R in the language, R(a,b) holds in the first structure if and only if R(A,B) holds in the second. In this game, one can see that the existence of a perfect strategy for the two players is equivalent to the existence of a homomorphism between the two structures, hence one can see how considering games such as these can be a useful way of approaching finite relational structures. The study of finite relational structures has many applications, for example to database theory, constraint satisfaction and graph theory. Building on similar work such as in [1] and [2], this project will aim to explore how the use of quantum information can be used to help find perfect strategies for games between finite relational structures such as the one described above, making use of the notion of a quantum homomorphism between structures. If one considers the category of structures in a certain language, known as a Kleisli category, strategies using quantum information in such games can also be recognised as monads, allowing one to bring to bear many notions from category theory also. Hence, the project will contribute to understanding how quantum resources can be used more effectively than classical resources in a range of information processing tasks. This approach will include a novel combination of methods from quantum information, finite model theory, and category theory.[1] The Pebbling Comonad in Finite Model Theory, S. Abramsky, A. Dawar and P. Wang[2] The Quantum Monad on Relational Structures, S. Abramsky, R.S. Barbosa, N. Silva, and O. Zapata
本项目属于EPSRC理论计算机科学研究领域。给定两个模型理论关系结构(都使用相同的底层语言),考虑两个参与者之间进行的以下博弈:从第一个结构中随机选择两个元素a和b,然后,在没有共享信息的情况下,参与人1和参与人2从第二个结构中选择元素a和b。对于语言中的每个关系R,当且仅当R(a,b)在第二个结构中成立时,R(a,b)在第一个结构中成立,玩家获胜。在这个博弈中,我们可以看到,两个参与者的完美策略的存在等同于两个结构之间同态的存在,因此我们可以看到,考虑这样的博弈如何成为接近有限关系结构的有用方法。有限关系结构的研究在数据库理论、约束满足和图论等领域有着广泛的应用。在[1]和[2]的类似工作的基础上,该项目将致力于探索如何利用量子信息来帮助找到有限关系结构(如上面描述的结构)之间博弈的完美策略,利用结构之间的量子同态概念。如果考虑某种语言中的结构类别,即Kleisli类别,那么在此类游戏中使用量子信息的策略也可以被视为单子,从而允许人们也从范畴论中引入许多概念。因此,该项目将有助于理解量子资源如何在一系列信息处理任务中比传统资源更有效地使用。这种方法将包括量子信息、有限模型理论和范畴理论方法的新颖组合S. Abramsky, R.S. Barbosa, N. Silva, O. Zapata .有限模型理论中的卵石共通,S. Abramsky, A. Dawar, P. Wang
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Foreign identity as an advantage in workplace adaptation: Conceptualization, contextualization, and construction
外国身份作为工作场所适应的优势:概念化、情境化和构建
- 批准号:
24K16439 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantum Computational Advantage via Contextual Measurements
通过上下文测量获得量子计算优势
- 批准号:
2310567 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of new technology controing ovarian function in cows by taking advantage of transvaginal administration
经阴道给药控制奶牛卵巢功能新技术的开发
- 批准号:
23K05551 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developlents of breeding and evolutionary studies taken advantage of using information of porotein three-dimensional structures by Alphafold2
利用Alphafold2的多孔蛋白三维结构信息,育种和进化研究的新进展
- 批准号:
23K18039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The AI Advantage: Developing Trusted, Ethical & Accessible AI Augmented Human Decision Making & Automation for SMBs
人工智能的优势:发展值得信赖、道德的
- 批准号:
10076405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Competitive Advantage and Revitalization of Production Areas in International Expansion of Green Tea ~From the Perspective of CSV~
绿茶国际扩张中的竞争优势与产地振兴~CSV的视角~
- 批准号:
23K01610 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Software Enabling Early Quantum Advantage - SEEQA
软件实现早期量子优势 - SEEQA
- 批准号:
EP/Y004310/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Software Enabling Early Quantum Advantage - SEEQA
软件实现早期量子优势 - SEEQA
- 批准号:
EP/Y004655/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Foreign identity as an advantage in the workplace
外国人身份是工作场所的优势
- 批准号:
23K18774 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up