Mathematical Foundations of Topological Quantum Field Theories

拓扑量子场论的数学基础

基本信息

  • 批准号:
    1941474
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The field of Topological Quantum Field Theories (TQFT) has always been a source of rich interaction between Mathematics and Physics. This interplay highly relies on the ability to 'translate' the ideas fromPhysics into a rigorous mathematical setting allowing the application of powerful theorems such as the Baez-Dolan Cobordism Hypothesis, which were discovered as purely mathematical statements. The most important tools for studying TQFT in mathematics are highercategory theory and, in particular, the fully-extended bordism category. Realising new 'physical' ideas as mathematical structures in these areas is not only a necessary step in the process of understanding them, but it also is an ample source of examples and motivation of the study of higher categorytheory as a subject, which is already interesting by itself.In the topic of theoretical condensed matter physics TQFTs arise as lowtemperature limits. They have been of particular interest for the purpose of using topological protection of quantum states in quantum computing.Such TQFTs have been grouped together into different classes, so-called topological phases. Which topological phases can occur in a specific physical situation depends on the parameters of that situation, mainly the dimensiond and the symmetry group G.There has since been a great interest in classifying topological phasesgiven the parameters (G, d) as such a classification would predict underwhich requirements particular phases, such as topological insulators canbe expected.Reflection positivity (rp) is a phenomenon that is observed in most physical TQFTs, but so far had no counter-part in the mathematical world. Recently Freed and Hopkins [2] proposed a definition of reflection positivityfor invertible topological phases and argued why one should expect it to be implemented for all TQFTs relevant in Physics. This improvement from the standard definition of a TQFT to a rpTQFT seems to close the gap between the results obtained from the mathematical model and those appearing in the theoretical physics literature. Using tools from stable equivariant homotopy theory they classified invertible rpTQFTs in low dimensions for most interesting symmetry groups reproducing the results known from the theoretical physics literature and generating new results in many interesting cases. From a mathematical perspective it is quite unsatisfying that the FreedHopkins definition of rp only works out for invertible TQFTs. It is therefore a natural question to ask for this definition to be extended to not necessarily invertible TQFTs and to generalize their classification results to this case.This project mainly falls into the research area of Geometry and Topology, but it also has strong links to several other areas in mathematics and physics. The novelty of the research method lies in combining the physical aspects of TQFT with the theory of equivariant higher categories, and in the invertible case with stable equivariant homotopy theory. This interconnectedness will be useful in either direction.
拓扑量子场论(TQFT)领域一直是数学和物理之间丰富互动的源泉。这种相互作用高度依赖于将物理学中的思想“翻译”成严格的数学环境的能力,从而允许应用强大的定理,如Baez-Dolan Cobordism假说,这些定理被发现为纯粹的数学陈述。在数学中研究TQFT的最重要的工具是高阶范畴理论,特别是完全扩展的边界范畴。将新的“物理”思想作为这些领域的数学结构来实现,不仅是理解它们的过程中的必要步骤,而且也是作为一门学科来研究更高范畴理论的例子和动机的充足来源,这本身就已经很有趣了。在理论凝聚态物理学的主题中,TQFT作为低温极限而出现。它们在量子计算中对量子态的拓扑保护有着特殊的意义,这些TQFT被分为不同的类别,即所谓的拓扑相。在特定的物理情况下,哪些拓扑相可以发生取决于该情况的参数,主要是维数d和对称群G。此后,对给定参数(G,d)的拓扑相进行分类产生了极大的兴趣,因为这样的分类将预测在哪些要求下特定的相,反射正性(rp)是在大多数物理TQFT中观察到的现象,但迄今为止在数学世界中还没有对应的部分。最近,Freed和霍普金斯[2]提出了可逆拓扑相位的反射正性的定义,并论证了为什么人们应该期望它适用于物理学中所有相关的TQFT。从TQFT的标准定义到rpTQFT的这种改进似乎缩小了从数学模型获得的结果与理论物理文献中出现的结果之间的差距。利用稳定等变同伦理论的工具,他们将可逆的rpTQFT在低维中分类为最有趣的对称群,重现了理论物理文献中已知的结果,并在许多有趣的情况下产生了新的结果。从数学的角度来看,FreedHopkins的rp定义只适用于可逆TQFT是非常不令人满意的。因此,这是一个自然的问题,要求这个定义被扩展到不一定可逆的TQFT和推广他们的分类结果,这种情况下。这个项目主要是福尔斯的几何和拓扑的研究领域,但它也有很强的联系,在数学和物理的其他几个领域。研究方法的新奇在于将TQFT的物理方面与等变高阶范畴理论相结合,并在可逆的情况下与稳定的等变同伦理论相结合。这种相互联系在任何一个方向都是有用的。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Space of Traces in Symmetric Monoidal Infinity Categories
对称幺半无穷范畴中的迹空间
The classifying space of the one-dimensional bordism category and a cobordism model for TC of spaces
一维边界范畴的分类空间和空间TC的共边界模型
  • DOI:
    10.1112/topo.12179
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Steinebrunner J
  • 通讯作者:
    Steinebrunner J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
  • 批准号:
    EP/Y028872/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
  • 批准号:
    EP/Y035976/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
  • 批准号:
    EP/Z531327/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Social Foundations of Cryptography
密码学的社会基础
  • 批准号:
    EP/X017524/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
  • 批准号:
    2340137
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Foundations, Algorithms, and Tools for Browser Invalidation
职业:浏览器失效的基础、算法和工具
  • 批准号:
    2340192
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Foundations of semi-infinite and equilibrium constrained optimization
职业:半无限和平衡约束优化的基础
  • 批准号:
    2340858
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了