Cloning tumor suppressor genes (TSG) from human chromoso

从人类染色体中克隆肿瘤抑制基因(TSG)

基本信息

项目摘要

VHL TSG (3p25) To analyze the function(s) of the VHL gene and its carcinogenic pathway(s) we obtained the entire genomic sequence of the gene including the promoter, introns, and flanks, and constructed a set of VHL minigenes (wild type and mutant) and a complete intronless VHL gene driven by the VHL promoter. We then set out to discover target genes controlled by pVHL. The differential display technology was employed to discover these genes using the UMRC6 and 786-0 cells stably transfected with wt and mutant VHL minigenes. To date (September 2001) six down regulated genes were identified, namely, NOTCH2 and DEC1, that specify cell fate determination and may have oncogenic potential, two transmembrane type carbonic anhydrases, CA9 and CA12, and two new unknown genes. The CA9 and CA12 genes are overexpressed in many tumor types due to hypoxia causing the loss of functional pVHL.The CAIX/XII enzymes could sense the intracellular pH and control the acidity (extracellular pH) of the miliew surrounding the cancer cells and thus create a microenvironment conducive to tumor growth and spread.They also play fundamental roles in normal physiology such as production of eye humor, brain and kidney functions etc. Analysis of the methylation of the VHL promoter in renal carcinoma cells carrying a methylated VHL endogene by monochromosome gene transfer, cell fusion, and VHL gene transfections showed that the meth+ phenotype is dominant in the UOK 21 cells probably resulting from changes in cis-acting elements of the VHL locus.We then created a mouse transgenic model expressing the human genomic VHL locus and demonstrated that human VHL methylation pattern was reproduced during mouse development and was very similar to that of the mouse VHL gene. This model would allow studying the local methylation protection mechanisms in the VHL locus and the effect of chromosomal context on de novo methylation of various elements of the VHL locus, such as repetitive sequences and the VHL CpG promoter. The future work will be focused (i) on the role of carbonic anhydrases (CAs) in the regulation of tumor pH and its impact on cancer growth, (ii) discovery new specific inhibitors of these enzymes to treat cancer, (iii) deveop and test CAIX/XII cDNA based vaccines to treat cancer, and (iv) the nature of the cis-acting elements in the VHL locus involved in de novo aberrant methylation. The 3p21.3 TSG We used overlapping and nested homozygous deletions, contig building, genomic sequencing, physical, and transcript mapping to further define a ~630-kb lung cancer homozygous deletion region harboring one or more tumor suppressor gene(s) (TSGs) on chromosome 3p21.3. This location was identified through somatic genetic mapping in cancers, cancer cell lines and pre-malignant lesions of the lung and breast including the discovery of several homozygous deletions. The combination of molecular manual methods and computational predictions permitted us to detect, isolate, characterize and annotate a set of 25 genes which likely constitute the complete set of protein-coding genes residing in this ~630-kb sequence. A subset of 19 of these genes were found within the deleted overlap region of ~370-kb. This region was further subdivided by a nesting 200-kb breast cancer homozygous deletion into two gene sets: 8 genes lying in the proximal ~120-kb segment and 11 genes lying in the distal ~250-kb segment. These 19 genes were analyzed extensively by computational methods and were tested by manual methods for loss of expression and mutations in lung cancers to identify candidate TSGs from within this group. Several genes showed loss-of-expression or reduced mRNA levels in non-small cell lung cancer (NSCLC) (CACNA2D2/ (a2d-2), SEMA3B (formerly SEMA(V),) BLU, RASSF1/A (formerly 123F2), and HYAL1) or small cell lung cancer (SCLC) (SEMA3B, BLU, RASSF1/A (formerly 123F2), and HYAL1) cell lines. We found six of the genes to have 2 or more amino acid sequence altering mutations including: BLU, NPRL2/Gene21, FUS1, HYAL1, FUS2, and SEMA3B. However, none of the 19 genes tested for mutation showed a frequent (>10%) mutation rate in lung cancer samples. This led us to exclude several of the genes in the region as classical tumor suppressors for sporadic lung cancer. On the other hand, the putative lung cancer TSG in this location may either be inactivated by tumor acquired promoter hypermethylation or belong to the novel class of haploinsufficient genes which predispose to cancer in a hemizygous (+/-) state but do not show a second mutation in the remaining wild type allele in the tumor. Functional testing of the critical genes by gene transfer and gene disruption strategies is under way and will permit the identification of the putative lung cancer TSG(s), LUCA.To date (September, 2001) we identified tha RASSF1/A gene as multiple TSG involved in many tumors, including lung, breast,prostate, kidney, head&neck (NPC) and others. The HYAL2 gene was identified as a GPI-anchored receptor for the sheep lung cancer retrovirus, JSRV and a sequestration mechanism inactivating HYAL2 product was demonstrated. The Env gene of JSRV was shown to transform human bronchial epithelial cells in vitro and sequester the HYAL2 gene product which alow to study the signal transduction pathways leading to carcinogenesis in this sytem. A new FAS2 gene cDNA polymorphism was shown to be associated with NPC with predictive value in Asian populations. This gene was also identified as a TSG for NPC.Current work is focused on the detection and isolation of the putative human retrovirus that may cause a rapidly rising form of human lung cancer namely bronchioloalveolar adenocarcinoma (BAC).. The 3p12 TSG Cytogenetic deletions and LOH at human 3p12 are a consistent feature of lung cancer specimens and suggest the presence of a tumor suppressor gene(s) (TSG) at this location. Only one gene (DUTT1, Deleted in U Twenty Twenty) was so far cloned from the overlapping region deleted in several lung and breast cancer cell lines (U2020, NCI H2198, HCC38). DUTT1 is the human ortholog of the fly gene ROBO that has homology to NCAM proteins. Extensive analyses of DUTT1 in lung cancer did not reveal any mutations, suggesting another gene(s) at this location could be associated with lung cancer initiation and/or development. We discovered in the overlapping critical region a new small (~230kb), nested homozygous deletion in the SCLC cell line GLC20. This deletion has been PCR-characterized using several polymorphic markers. P1 library screening produced three overlapping clones that cover the whole region and flanks. These clones were used to define by fiber-FISH the location and size of the deletion. Recently several BAC clones covering this region were sequenced by the MIT genome sequencing center providing a genomic tool to discover in silico the resident genes. Several genes represented by EST clusters were detected in the deletion and are being isolated. Subsequent mutation and functional studies will identify the potential 3p12 lung/breast cancer TSG.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL LERMAN其他文献

MICHAEL LERMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL LERMAN', 18)}}的其他基金

Functional Analysis of Cancer Genes from Human Chromosom
人类染色体癌症基因的功能分析
  • 批准号:
    7291849
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Cloning tumor suppressor genes (TSG) from human chromosomes 3p and 8p
从人类染色体 3p 和 8p 克隆肿瘤抑制基因 (TSG)
  • 批准号:
    6433098
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
CLONING TUMOR SUPPRESSOR GENES (TSG) FROM HUMAN CHROMOSOMES 3P AND 8P
从人类染色体 3P 和 8P 克隆肿瘤抑制基因 (TSG)
  • 批准号:
    6289207
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Cloning and functional analysis of tumor suppressor gene
抑癌基因的克隆及功能分析
  • 批准号:
    7048226
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Functional Analysis of Cancer Genes from Human Chromosom
人类染色体癌症基因的功能分析
  • 批准号:
    7337954
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Cloning and functional analysis of tumor suppressor gene
抑癌基因的克隆及功能分析
  • 批准号:
    6950492
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Cloning and functional analysis of tumor suppressor gene
抑癌基因的克隆及功能分析
  • 批准号:
    6762015
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Functional Analysis of Cancer Genes from Human Chromosome 3p
人类 3p 染色体癌症基因的功能分析
  • 批准号:
    7592578
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Functional Analysis of Cancer Genes from Human Chromosome 3p
人类 3p 染色体癌症基因的功能分析
  • 批准号:
    7732922
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Prevention of Radiation-Induced Carcinogenesis by Senolytics
通过 Senolytics 预防辐射诱发的致癌作用
  • 批准号:
    23H03539
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of Prostaglandin D Receptor-mediated Carcinogenesis Mechanism of Colitic Cancer
前列腺素D受体介导的结肠癌致癌机制的阐明
  • 批准号:
    23K08219
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of carcinogenesis and symptoms associated with alcohol consumption
致癌的分子机制和饮酒相关症状
  • 批准号:
    23K05734
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The mechanism of oral carcinogenesis by FAT1 gene mutation
FAT1基因突变导致口腔癌的机制
  • 批准号:
    23K15977
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Interactions Between the Microbiota and Helicobacter pylori in Gastric Carcinogenesis
微生物群与幽门螺杆菌在胃癌发生中的相互作用
  • 批准号:
    10709135
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Pathways of Injury and Repair in Barrett's Carcinogenesis
巴雷特癌发生过程中的损伤和修复途径
  • 批准号:
    10713938
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Spatial transcriptomic research on carcinogenesis and progression of lung cancer with interstitial pneumonia
肺癌合并间质性肺炎发生发展的空间转录组学研究
  • 批准号:
    23K14468
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
TWINNING FOR EXCELLENCE TO STRATEGICALLY ADVANCE RESEARCH IN CARCINOGENESIS AND CANCER
结对卓越,战略性地推进致癌和癌症研究
  • 批准号:
    10050740
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Mechanisms of myeloid cell driven pancreatic plasticity and carcinogenesis
骨髓细胞驱动胰腺可塑性和致癌机制
  • 批准号:
    10607213
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Stromal contributions to breast carcinogenesis
基质对乳腺癌发生的贡献
  • 批准号:
    10748124
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了