Scalable Design of Robust Neural Network Controllers
鲁棒神经网络控制器的可扩展设计
基本信息
- 批准号:2077605
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research description: Research into neural network models is a large field and requires a variety of mathematical techniques to address any relevant research questions. There has been a recent resurgence of interest due to the increase in the prevalence of big-data and computational power available. Examples of such areas include image recognition, weather prediction and natural language processing. One important consideration is the increasing use of neural networks in safety-critical applications, such as autonomous vehicle technology. This accentuates the biggest shortcoming of neural networks, which is their sensitivity to adversarial inputs: small changes in the input set can lead to large changes in the output. Despite considerable effort from the research community to improve our understanding and to allow certification of neural networks, to date guarantees on these systems are not sufficient for their widespread use in safety-critical applications. This doctoral project will build upon the existing research to explore various problems related to the robustness of neural networks. One popular method that has seen a large amount of success is to use bounds on the activation functions within these networks to provide such guarantees. However, due to the large number of possible ways to bound the activation functions, there is a trade-off between conservativeness and complexity. It is possible to improve the scalability of optimization problem by using theory from chordal graphs, where large constraints matrices are split into equivalent smaller constraints matrices. These ideas can also be combined with Sum of Squares programming - a technique that uses semi-definite programming. This technique can be used to obtain tighter bounds on the neural network output, whilst maintaining a computational scalable method of obtaining a solution. These ideas can also be extended to neural network controllers, to provide better control performance and robustness of a feedback system. Aims and objectives: The end goal of this work is to create a framework to design robust neural network controllers in a scalable way. The robustness can be quantified using stability theory and determined through solving a Sum of Squares program. Since neural network structures can become very large, determining the stability can be computational expensive. However, there are ways to reformulate the problem to reduce this computational burden by using ideas from chordal sparsity. These techniques are a key area that is being explored in this project. The main questions that will be addressed in this doctoral project focus on combining Sum of Squares programming and chordal sparsity to the neural network verification problem. Once this is established the next objective is to see how these ideas extend to neural network controllers and then how they can be used to improve the performance of feedback systems. Novelty of the research methodology: Sum of Squares techniques have not yet been applied to problems surrounding neural networks. This has led to gaps in the research area, which will be explored in this DPhil. Combining Sum of Squares and sparsity exploiting methods is an open research area. Neural network controllers are also emerging in the research community and there are many questions that need exploring.
研究描述:神经网络模型的研究是一个很大的领域,需要多种数学技术来解决任何相关的研究问题。由于大数据和可用计算能力的普及,最近人们的兴趣重新燃起。这些领域的例子包括图像识别、天气预报和自然语言处理。一个重要的考虑因素是神经网络在安全关键应用中的使用越来越多,例如自动驾驶汽车技术。这凸显了神经网络的最大缺点,即它们对对抗性输入的敏感性:输入集的微小变化可能会导致输出的巨大变化。尽管研究界付出了巨大努力来提高我们的理解并允许对神经网络进行认证,但迄今为止对这些系统的保证还不足以使其在安全关键型应用中广泛使用。该博士项目将在现有研究的基础上探索与神经网络鲁棒性相关的各种问题。一种已取得巨大成功的流行方法是在这些网络中使用激活函数的界限来提供此类保证。然而,由于限制激活函数的可能方法有很多,因此需要在保守性和复杂性之间进行权衡。通过使用弦图理论可以提高优化问题的可扩展性,其中大的约束矩阵被分割成等效的较小的约束矩阵。这些想法还可以与平方和编程(一种使用半定编程的技术)相结合。该技术可用于获得神经网络输出的更严格界限,同时保持获得解决方案的计算可扩展方法。这些想法也可以扩展到神经网络控制器,以提供更好的控制性能和反馈系统的鲁棒性。目的和目标:这项工作的最终目标是创建一个框架,以可扩展的方式设计鲁棒的神经网络控制器。鲁棒性可以使用稳定性理论进行量化,并通过求解平方和程序来确定。由于神经网络结构可能变得非常大,因此确定稳定性的计算成本可能很高。然而,有一些方法可以通过使用弦稀疏性的思想来重新表述问题,以减少计算负担。这些技术是该项目正在探索的关键领域。该博士项目将解决的主要问题集中于将平方和编程和弦稀疏性与神经网络验证问题相结合。一旦确定了这一点,下一个目标就是了解这些想法如何扩展到神经网络控制器,以及如何使用它们来提高反馈系统的性能。 研究方法的新颖性:平方和技术尚未应用于神经网络周围的问题。这导致了研究领域的空白,本博士将对此进行探索。结合平方和和稀疏性利用方法是一个开放的研究领域。神经网络控制器也在研究界不断涌现,有许多问题需要探索。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Network Lyapunov Functions for Epidemic Models
- DOI:10.1109/cdc42340.2020.9304021
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:M. Newton;A. Papachristodoulou
- 通讯作者:M. Newton;A. Papachristodoulou
Stability of Non-linear Neural Feedback Loops using Sum of Squares
使用平方和的非线性神经反馈环路的稳定性
- DOI:10.1109/cdc51059.2022.9993191
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Newton M
- 通讯作者:Newton M
Reachability Analysis of Neural Feedback Loops using Sparse Polynomial Optimisation
- DOI:10.1109/cdc51059.2022.9992719
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:M. Newton;A. Papachristodoulou
- 通讯作者:M. Newton;A. Papachristodoulou
Neural Network Verification using Polynomial Optimisation
使用多项式优化的神经网络验证
- DOI:10.1109/cdc45484.2021.9683286
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Newton M
- 通讯作者:Newton M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
在噪声和约束条件下的unitary design的理论研究
- 批准号:12147123
- 批准年份:2021
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Unified Robust Control System Design for Regional Multi-Energy Systems Based on Multi-Dimensional Systems and Dissipativity
基于多维系统和耗散性的区域多能源系统统一鲁棒控制系统设计
- 批准号:
23K03910 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
ERI: Multilevel Inverse Robust Co-Design of Materials, Products, and Manufacturing Processes
ERI:材料、产品和制造工艺的多级逆稳健协同设计
- 批准号:
2301808 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Robust aesthetic design using deep learning with consideration of variations in customer Kansei evaluation and inter-customer Kansei variation
使用深度学习进行稳健的美学设计,考虑客户感性评估的变化和客户间感性变化
- 批准号:
23K11749 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a Robust and Efficient Strategy for Censored Covariates to Improve Clinical Trial Design for Neurodegenerative Diseases
为删失协变量制定稳健有效的策略,以改进神经退行性疾病的临床试验设计
- 批准号:
10634043 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Design principles for robust exploration capability in unknown environments inspired by centipede antennal sensing
受蜈蚣触角传感启发,在未知环境中实现强大探索能力的设计原则
- 批准号:
23K13349 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust Design and Effective Control of Mechanical Systems
机械系统的稳健设计和有效控制
- 批准号:
RGPIN-2020-05119 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: New Informationally Robust Approaches to Mechanism Design and Games of Incomplete Information
协作研究:机制设计和不完全信息博弈的新信息鲁棒方法
- 批准号:
2215259 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: New Informationally Robust Approaches to Mechanism Design and Games of Incomplete Information
协作研究:机制设计和不完全信息博弈的新信息鲁棒方法
- 批准号:
2215475 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant